[1] Charlson R J, Schwartz S E, Hales J M, et al. Climate forcing by anthropogenic aerosols [J]. Science, 1992, 255(5043): 423-430.
[2] D'Almeida G A, Koepke P, Shettle E P. Atmospheric aerosols: global climatology and radiative characteristics [J]. J. Med. Microbiol., 2005, 54(1): 55-61.
[3] Allen S K, Plattner G K, Nauels A, et al. Climate change 2013: the physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC) [C]// EGU General Assembly Conference. EGU General Assembly Conference Abstracts, 2014.
[4] Remer L A, Santiago G, Hegg D A, et al. Urban/industrial aerosol: Ground-based Sun/sky radiometer and airborne in situ measurements [J]. J. Geophys. Res., 1997, 102(D14): 16849-16859.
[5] Satheesh S K, Moorthy K K. Radiative effects of natural aerosols: A review [J]. Atmos. Environ., 2005, 39(11): 2089-2110.
[6] Jacobson M Z. Global direct radiative forcing due to multicomponent anthropgenic and natural aerosols [J]. J. Geophys. Res., 2001, 106(D2): 1551-1568
[7] Song Wei, Zhang Lei. A review of remote sensing for aerosol optical depth [J]. Arid Meteorology, 2007, 25(3): 76-81(in Chinese).
宋薇, 张镭. 大气气溶胶光学厚度遥感研究概况 [J]. 干旱气象, 2007, 25(3): 76-81.
[8] Li Xiaojing, Gao Ling, Zhang Xingying, et al. Global change of aerosol optical depth based on satellite remote sensing data [J]. Science & Technology Review, 2015, 33(17): 30-39(in Chinese).
李晓静, 高玲, 张兴赢, 等. 卫星遥感监测全球大气气溶胶光学厚度变化 [J]. 科技导报, 2015, 33(17): 30-40.
[9] Chu D A, Remer L A, Kaufman Y J, et al. Evaluation of aerosol properties over ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia [J]. J. Geophys. Res., 2005, 110(D7): 1275-1287.
[10] Winker D M, Hostetler C A, Hunt W H. Cloud-aerosol lidar with orthogonal polarization (CALIOP)[C]// Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International. IEEE, 2003: 1514-1516.
[11] Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIOP mission and CALIOP data processing algorithms [J]. J. Atmos. Ocean. Tech., 2009, 26(11): 2310-2323.
[12] Hu Die. Aerosol Optical Depth Based on Satellite Observations in China [D]. Lanzhou: Master’s Thesis of Lanzhou University, 2012(in Chinese).
胡蝶. 中国地区大气气溶胶光学厚度的卫星遥感监测分析[D]. 兰州: 兰州大学硕士论文, 2012.
[13] Li Z, Niu F, Kwon‐Ho L, et al. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground‐based measurements from the handheld Sun photometer network in China [J]. J. Geophys. Res., 2007, 112(D22): 365-371.
[14] Mao Jietai, Li Chengcai, Zhang Junhua, et al. The comparison of remote sensing aerosol optical depth from MODIS data and ground sun-photometer observations [J]. Journal of Applied Meteorological Science, 2002, 13: 127-135(in Chinese).
毛节泰,李成才,张军华,等. MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比[J]. 应用气象学报, 2002, 13: 127-135.
[15] Kittaka C, Winker D M, Vaughan M A, et al. Intercomparison of column aerosol optical depths from CALIOP and MODIS-Aqua [J]. Atmos. Meas. Tech, 2004, 69(3): 183-186.
[16] Redemann J, Vaughan M A, Zhang Q, et al. The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth [J]. Atmos. Chem. Phys. Discuss., 2011, 11(6): 3025-3043.
[17] Omar A H, Winker D M, Kittaka C, et al. The CALIOP automated aerosol classification and lidar ratio selection algorithm [J]. J. Atmos. Ocean. Tech., 2009, 26(10): 1994-2014.
[18] Tackett J L, Winker D M, Getzewich B J, et al. Quality screening algorithms implemented in the new CALIOP Level 3 aerosol profile product [C]. American Geophysical Union, 2012.
[19] Yu H, Chin M, Winker D M, et al. Global view of aerosol vertical distributions from CALIOP lidar measurements and GOCART simulations: regional and seasonal variations [J]. J. Geophys. Res., 2010, 115(D4): 1307-1314.
[20] Levy R C, Mattoo S, Munchak L A, et al. The Collection 6 MODIS aerosol products over land and ocean [J]. Atmos. Meas. Tech. Discuss., 2013, 6(1): 159-259.
[21] Holben B N, Tanre D, Smirnov A, et al. An emerging ground‐based aerosol climatology: Aerosol optical depth from AERONET [J]. J. Geophys. Res., 2001, 106(D11): 12067-12097.
[22] Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements [J]. J. Geophys. Res., 2000, 105(D8): 9791-9806.
[23] Deng Xueliang, Deng Weitao, He Dongyan. Spatial-temporal features of atmospheric aerosol in East China in recent years [J]. Transactions of Atmospheric Sciences, 2010, 33(3): 347-354(in Chinese).
邓学良, 邓伟涛, 何冬燕. 近年来华东地区大气气溶胶的时空特征 [J]. 大气科学学报, 2010, 33(3): 347-354.
[24] Wang Fu. Analysis of Aerosol-Cloud Interaction Observed from Spaceborne Sensors over Eastern China [D]. Chengdu: Doctorial Dissertation of University of Electronic Science and Technology of China, 2015(in Chinese).
王富. 中国东部地区气溶胶-云相互作用卫星遥感建模研究[D]. 成都: 电子科技大学博士论文, 2015.
[25] Hsu N C, Tsay S C, King M D, et al. Deep blue retrievals of Asian aerosol properties during ACE-Asia [J]. IEEE T. Geosci. Remote, 2006, 44(11): 3180-3195.
[26] Hu Die, Zhang Lei, Sha Sha. Contrast and application of MODIS aerosol products over the arid and semiarid region in Northwest China [J]. Journal of Arid Meteorology, 2013, 31(4): 677-683(in Chinese).
胡蝶, 张镭, 沙莎, 等. 西北地区MODIS气溶胶产品的对比应用分析 [J]. 干旱气象, 2013, 31(4): 677-683.
[27] Liu Zhen, Zheng Youfei, Liu Jianjun, et al. Research on the distribution of the northern region of China aerosol based on A-trian satellite [J]. China Environmental Science, 2015, 35(10): 2891-2898(in Chinese).
刘贞, 郑有飞, 刘建军, 等. 基于A-train卫星对中国北方地区气溶胶分布的研究[J]. 中国环境科学, 2015, 35(10): 2891-2898. |