[1] Li Xiaoqian. Atmospheric Peroxy Radical Measurement and its Related Chemistry Behavior [D]. Beijing: Doctorial Dissertation of Peking University, 2009(in Chinese).
李晓倩. 大气过氧自由基的测量及其有关化学行为研究 [D]. 北京: 北京大学博士论文, 2009.
[2] Liu Y, Morales-Cueto R, Hargrove J, et al. Measurements of peroxy radicals using chemical amplification−cavity ringdown spectroscopy [J]. Environ. Sci. Technol., 2009, 43(20): 7791-7796.
[3] Liu Y, Zhang J. Atmospheric peroxy radical measurements using dual-channel chemical amplification cavity ringdown spectroscopy [J]. Anal. Chem., 2014, 86(11): 5391-5398.
[4] Ren Xinrong, Wu Juan, Shao Kesheng, et al. Advances in measurement of atmospheric peroxy radicals [J]. Environmental Science & Technology, 2001, 24(3): 5-9(in Chinese).
任信荣, 吴涓, 邵可声, 等. 大气过氧自由基测量研究进展 [J]. 环境科学与技术, 2001, 24(3): 5-9.
[5] Li Xiaoqian, Lu Keding, Wei Yongjie, et al. Technique progress and chemical mechanism research of tropospheric peroxy radical in field measurement [J]. Progress in Chemistry, 2014, 26(4): 682-694(in Chinese).
李晓倩, 陆克定, 魏永杰, 等. 对流层大气过氧自由基实地测量的技术进展及其在化学机理研究中的应用 [J]. 化学进展, 2014, 26(4): 682-694. [6] Mihelcic D, Holland F, Hofzumahaus A, et al. Peroxy radicals during BERLIOZ at Pabstthum: Measurements, radical budgets and ozone production [J]. Journal of Geophysical Research: Atmospheres (1984–2012), 2003, 108(D4): 8254.
[7] Mihelcic D, Klemp D, Müsgen P, et al. Simultaneous measurements of peroxy and nitrate radicals at Schauinsland [J]. J. Atmos. Chem., 1993, 16(4): 313-335.
[8] Mihelcic D, Müsgen P, Ehhalt D H. An improved method of measuring tropospheric NO2 and RO2 by matrix isolation and electron spin resonance [J]. J. Atmos. Chem., 1985, 3(3): 341-361.
[9] Mihelcic D, Volz-Thomas A, Pätz H W, et al. Numerical analysis of ESR spectra from atmospheric samples [J]. J. Atmos. Chem., 1990, 11(3): 271-297.
[10] Wang Dan, Xie Pinhua, Hu Zhiren, et al. Progress of measurement of atmospheric NO3 radicals [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2):102-116(in Chinese).
王丹, 谢品华, 胡仁志, 等. 大气环境NO3自由基探测技术研究进展 [J]. 大气与环境光学学报, 2015, 10(2): 102-116.
[11] Nie Jingsong, Zhang Weijun, Yang Yong, et al. The population of hydroxyl rotation level and it’s influence to LIF [J]. Chinese Journal of Atomic and Molecular Physics, 2001, 18(2): 123-126(in Chinese).
聂劲松, 张为俊, 杨颙, 等. 激光诱导荧光法测量OH自由基中激光产生的OH自由基转动能级布居及其对测量的影响 [J]. 原子与分子物理学报, 2001, 18(2): 123-126.
[12] Holland F, Hofzumahaus A, Schäfer J, et al. Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ [J]. J. Geophys. Res., 2003, 108(D4): PHO 2-1-PHO 2-23.
[13] Kanaya Y, Sadanaga Y, Hirokawa J, et al. Development of a ground-based LIF instrument for measuring HOx radicals: Instrumentation and calibrations [J]. J. Atmos. Chem., 2001, 38(1): 73-110.
[14] Faloona I C, Tan D, Lesher R L, et al. A laser-induced fluorescence instrument for detecting tropospheric OH and HO2: Characteristics and calibration [J]. J. Atmos. Chem., 2004, 47(2): 139-167.
[15] Smith S C, Lee J D, Bloss W J, et al. Concentrations of OH and HO2 radicals during NAMBLEX: measurements and steady state analysis [J]. Atmos. Chem. Phys., 2006, 6(5): 1435-1453.
[16] Cantrell C A, Stedman D H. A possible technique for the measurement of atmospheric peroxy radicals [J]. Geophys. Res. Lett., 1982, 9(8): 846-849.
[17] Cantrell C A, Stedman D H, Wendel G J. Measurement of atmospheric peroxy radicals by chemical amplification [J]. Anal. Chem., 1984, 56(8):1496-1502.
[18] Hastie D R, Weissenmayer M, Burrows J P, et al. Calibrated chemical amplifier for atmospheric ROx measurements [J]. Anal. Chem., 1991, 63(18): 2048-2057.
[19] Mihele C M, Hastie D R. The sensitivity of the radical amplifier to ambient water vapour [J]. Geophys. Res. Lett., 1998, 25(11): 1911-1913.
[20] Shao Xiaodong, Li Ying. Research progress and application of luminol chemiluminescent analysis [J]. Chemical Research, 2010(1): 102-112(in Chinese).
邵晓东, 李瑛. 鲁米诺化学发光分析法研究进展 [J]. 化学研究, 2010(1): 102-112.
[21] Maeda Y, Aoki K, Munemori M. Chemiluminescence method for the determination of nitrogen dioxide [J]. Anal. Chem., 1980, 52(2): 307-311.
[22] Parker A E, Monks P S, Wyche K P, et al. Peroxy radicals in the summer free troposphere: seasonality and potential for heterogeneous loss [J]. Atmos. Chem. Phys., 2009, 9(6): 1989-2006.
[23] Kartal D, Andrés-Hernández M D, Reichert L, et al. Technical note: Characterisation of a DUALER instrument for the airborne measurement of peroxy radicals during AMMA 2006 [J]. Atmos. Chem. Phys., 2010, 10(6): 3047-3062.
[24] Sommariva R, Brown S S, Roberts J M, et al. Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006 [J]. Atmos. Chem.Phys., 2011, 11(6): 2471-2485.
[25] Clemitshaw K C, Carpenter L J, Penkett S A, et al. A calibrated peroxy radical chemical amplifier for ground‐based tropospheric measurements [J]. J. Geophys. Res., 1997, 102(D21): 25405-25416.
[26] Li X Q, Qi B, Zeng L M, et al. Development and deployment of an instrument for measurement of atmospheric peroxy radical by chemical amplification [J]. Sci. China Ser. D, 2009, 52(3): 333-340.
[27] Miyazaki K, Matsumoto J, Kato S, et al. Development of atmospheric NO analyzer by using a laser-induced fluorescence NO2 detector [J]. Atmos. Environ., 2008, 42(33): 7812-7820.
[28] Matsumoto J, Kajii Y. Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique [J]. Atmos. Environ., 2003, 37(34): 4847-4851.
[29] Sadanaga Y, Matsumoto J, Sakurai K, et al. Development of a measurement system of peroxy radicals using a chemical amplification/laser-induced fluorescence technique[J]. Rev. Sci. Inst., 2004, 75(4): 864-872.
[30] Miyazaki K, Parker A E, Fittschen C, et al. A new technique for the selective measurement of atmospheric peroxy radical concentrations of HO2 and RO2 using a denuding method [J]. Atmos. Meas. Tech., 2010, 3(6): 1547-1554.
[31] Matsumoto J, Hirokawa J, Akimoto H, et al. Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique [J]. Atmos. Environ., 2001, 35(16): 2803-2814.
[32] Matsumoto J, Kajii Y. Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique [J]. Atmos. Environ., 2003, 37(34): 4847-4851.
[33] Xu Xuezhe, Zhao Weixiong, Dong Meili, et al. Monitoring aerosol extinction with cavity enhanced/ring-down spectroscopy: A brief review [J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 477-488(in Chinese).
徐学哲, 赵卫雄, 董美丽, 等. 腔增强/衰荡光谱应用于气溶胶消光检测研究进展 [J]. 量子电子学报, 2014, 31(4): 477-488.
[34] Chen Bing. High Sensitivity Cavity Ring down Spectroscopy For Trace Gas Detection [D]. Heifei: Doctorial Dissertation of University of Science and Technology of China, 2014(in Chinese).
陈兵. 高灵敏光腔衰荡光谱测量痕量气体分子 [D]. 合肥: 中国科学技术大学博士论文, 2014.
[35] Lin Yuwei. Cavity ring down spectroscopy technology and its application in analysis of trace gas [J]. Low Temperature and Specialty Gases, 2011, 29(1): 5-7(in Chinese).
林宇巍. 光腔衰荡光谱技术及其在痕量气体分析中的应用[J]. 低温与特气, 2011, 29(1): 5-7.
[36] Mi Yunping, Wang Xiaoping, Zhan Shuyue, et al. Review on cavity ring down spectroscopy technology and its application [J]. Optical Instruments, 2007, 29(5): 85-89(in Chinese).
宓云軿, 王晓萍, 詹舒越. 光腔衰荡光谱技术及其应用综述 [J]. 光学仪器, 2007, 29(5): 85-89.
[37] Li Zhixin, Fu Xiaofang, Tan Wei, et al. Experimental research of cavity-ring down spectroscopy based on control of reflected light of cavity [J]. Journal of Atmospheric and Environmental Optics, 2012, 7(6): 458-462(in Chinese).
李志新, 付小芳, 谭巍, 等. 基于腔反射光控制的腔衰荡光谱测量实验研究 [J]. 大气与环境光学学报, 2012, 7(6): 458-462.
[38] Zhao Gang, Li Zhixin, Tan Wei, et al. Cavity-ring down spectroscopy based on frequency locking and application in mirror reflectivity measurement [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(5): 425-431(in Chinese).
赵刚, 李志新, 谭巍,等. 基于频率锁定腔衰荡光谱技术及其在镜面反射率测量中的应用[J]. 大气与环境光学学报, 2015, 10(5): 425-431.
[39] Herbelin J M, McKay J A, Kwok M A, et al. Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method [J]. Appl. Opt., 1980, 19(1): 144-147.
[40] Kebabian P L, Robinson W A, Freedman A. Optical extinction monitor using cw cavity enhanced detection [J]. Rev. Sci. Instrum., 2007, 78(6): 063102.
[41] Kebabian P L, Wood E C, Herndon S C, et al. A practical alternative to chemiluminescence-based detection of nitrogen dioxide: cavity attenuated phase shift spectroscopy [J]. Environ. Sci. Technol., 2008, 42(16): 6040-6045.
[42] Massoli P, Kebabian P L, Onasch T B, et al. Aerosol light extinction measurements by cavity attenuated phase shift (CAPS) spectroscopy: Laboratory validation and field deployment of a compact aerosol particle extinction monitor [J]. Aerosol Sci. Tech., 2010, 44(6): 428-435.
[43] Wood E C, Charest J R. Chemical Amplification-Cavity Attenuated Phase Shift Spectroscopy Measurements of Atmospheric Peroxy Radicals [J]. Anal. Chem., 2014, 86(20): 10266-10273.
[44] Tan Z Q, Huang Y, Wu S Y, et al. Measurement and characteristics analyses of spectral ripple in optical-feedback cavity ring-down spectroscopy [J]. High Power Laser and Particle Beams, 2015, 27(7): 27071008.
[45] Morville J, Romanini D, Kachanov A A, et al. Two schemes for trace detection using cavity ringdown spectroscopy [J]. Applied Physics B, 2004, 78(3):465-476.
[46] Morville J, Kassi S, Chenevier M, et al. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking[J]. Appl. Phys. B, 2005, 80(8): 1027-1038.
[47] Wan Fu, Chen Weigen, Gu Mingliang, et al. Measurement of Trace C2H2 Based on Optical-Feedback Cavity-Enhanced Absorption Spectroscopy [J]. Spectroscopy and Spectral Analysis, 2015(10): 2792-2796(in Chinese).
万福, 陈伟根, 顾朝亮, 等. 光反馈腔增强吸收光谱技术的痕量乙烷检测研究 [J]. 光谱学与光谱分析, 2015(10): 2792-2796.
[48] Wang Wenzhi, Tan Zhongqi, Huang Yun, et al. Preliminary study on linewidth reduction and frequency locking of laser diode on optical feedback from a V-shade cavity [J]. Optics & Optoelectronic Technology, 2014, 12(1):32-36(in Chinese).
王文志, 谭中奇, 黄云, 等. 基于V型腔光反馈法的半导体激光器线宽压窄和频率锁定初步研究 [J]. 光学与光电技术, 2014, 12(1): 32-36.
[49] Morville J, Kassi S, Chenevier M, et al. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking [J]. Appl. Phys. B, 2005, 80(8): 1027-1038.
[50] Courtillot I, Morville J, Motto-Ros V, et al. Sub-ppb NO2 detection by optical feedback cavity-enhanced absorption spectroscopy with a blue diode laser [J]. Appl. Phys. B, 2006, 85(2-3): 407-412.
[51] Tan Z Q, Wu S Y, Liu J P, et al. Spectrum data processing in optical-feedback cavity ring-down spectroscopy [J]. High Power Laser and Particle Beams, 2014, 26(10): 101006.
[52] Desbois T, Ventrillard I, Romanini D. Simultaneous cavity-enhanced and cavity ringdown absorption spectroscopy using optical feedback [J]. Appl. Phys. B, 2013, 116(1): 195-201.
[53] Horstjann M, Hernández A M D, Nenakhov V, et al. Peroxy radical detection for airborne atmospheric measurements using absorption spectroscopy of NO2 [J]. Atmos. Meas. Tech., 2014, 6(5): 1245-1257.
[54] Engeln R, Berden G, Peeters R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy [J]. Rev. Sci. Instrum., 1998, 69(11): 3763-3769.
[55] Fiedler S E, Hese A, Ruth A A. Incoherent broad-band cavity-enhanced absorption spectroscopy [J]. Chem. Phys. Lett., 2003, 371(3): 284-294.
[56] Dong Meili, Zhao Weixiong, Cheng Yue, et al. Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement [J]. Acta Physica Sinica, 2012, 61(6): 60702-060702(in Chinese).
董美丽, 赵卫雄, 程跃, 等. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量 [J]. 物理学报, 2012, 61(6): 60702-060702. [57] Zhao Weixiong. Integrated Cavity Output Spectroscopy and Its Application [D]. Heifei: Doctorial Dissertion of Heifei Institutes of Physical Science, Chinese Academy of Science, 2008(in Chinese).
赵卫雄. 积分腔输出光谱技术及其应用研究 [D]. 合肥:中国科学院合肥物质科学研究院博士论文, 2008.
[58] Dong Meili, Xu Xuezhe, Zhao Weixiong, et al. High-sensitive trace detection of NO2 with broadband cavity-enhanced spectroscopy [J]. Journal of Applied Optics, 2014(2): 264-269(in Chinese).
董美丽, 徐学哲, 赵卫雄, 等. NO2分子高灵敏度痕量探测技术研究 [J]. 应用光学, 2014, 35(2): 264-269.
[59] Zhao W, Dong M, Chen W, et al. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445–480 nm [J]. Anal. Chem., 2013, 85(4): 2260-2268.
[60] Dong Meili. Broadband Cavity Enhanced Absorption Spectroscopy for trace gases and aerosol optical properties measurement [D]. Heifei: Doctorial Dissertation of Heifei Institutes of Physical Science, Chinese Academy of Science, 2013(in Chinese).
董美丽. 宽带腔增强吸收光谱技术应用于痕量气体及气溶胶光学特性测量 [D]. 合肥: 中国科学院合肥物质科学研究院博士论文, 2013.
[61] Zhao W, Zhang W. Development of a dual-channel chemical amplification broadband cavity enhanced spectroscopy instrument for the measurement of peroxy radicals [C]//Optical Nanostructures and Advanced Materials for Photovoltaics, Optical Society of America, 2015. |