[1] Kocher D C. A dynamic model of the global iodine cycle and estimation of dose to the world population from releases of iodine-129 to the environment [J]. Environ. Int., 1981, 5(1): 15-31.
[2] Whitehead D C. The distribution and transformations of iodine in the environment [J]. Environ. Int., 1984, 10(4): 321-339.
[3] Dang Aicui, Long Aimin, Chen Shaoyong. Distribution and morphology transformation of the iodine in the marine ecosystems [J]. Transactions of Oceanology and Limnology, 2012, 12(4): 146-154(in Chinese).
党爱翠, 龙爱民, 陈绍勇. 海洋生态系统中碘的分布及形态转化 [J]. 海洋湖沼通报, 2012, 12(4): 146-154.
[4] Xu Siqi, Li Bing. Process of research of the atmospheric aerosol from the iodine oxide [J]. Acta Scientiae Circumstantiae, 2010, 31(5): 1121-1129(in Chinese).
徐思琦, 李冰. 大气气溶胶中碘形态研究进展 [J]. 环境科学学报, 2010, 31(5): 1121-1129.
[5] Vogt R, Sander R, Glasow R V, et al. Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study [J]. J. Atmos. Chem., 1999, 32(3): 375-395.
[6] Chameides W L, Davis D D. Iodine: its possible role in tropospheric photochemistry [J]. J. Geophy. Res.: Oceans, 1981, 85(NC12): 7383-7398.
[7] McFiggans G, Plane J M C, Allan B J, et al. A modeling study of iodine chemistry in the marine boundary layer [J]. J. Geophy. Res.: Atmos., 2000, 105(D11): 14371-14385.
[8] Calvert J G, Lindberg S E. Potential influence of iodine-containing compounds on the chemistry of the troposphere in the polar spring. I. Ozone depletion [J]. Atmos. Environ., 2004, 38(30): 5087-5104.
[9] Harwood M H, Burkholder J B, Hunter M, et al. Absorption cross sections and self-reaction kinetics of the IO radical [J]. J. Phys. Chem. A., 1997, 101(5): 853-863.
[10] Bloss W J, Lee J D, Johnson G P, et al. Impact of halogen monoxide chemistry upon boundary layer OH and HO2 concentrations at a coastal site [J]. Geophys. Res. Lett., 2005, 32(6): 293-306.
[11] Saiz-Lopez A, Plane J M C, Mahajan A S, et al. On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O3, HOx, NOx and the Hg lifetime [J]. Atmos. Chem. Phys., 2007, 8(4): 887-900.
[12] Alicke B, Kai H, Stutz J, et al. Iodine oxide in the marine boundary layer [J]. Nature, 1999, 397(397): 572-573.
[13] Saiz-Lopez A, Plane J M C, Baker A R, et al. Atmospheric chemistry of iodine [J]. Chem. Rev., 2012, 112(3): 1773-1804.
[14] Saunders R W, Plane J M C. Formation pathways and composition of iodine oxide ultra-fine particles [J]. Environ. Chem., 2005, 2(4): 299-303.
[15] Saiz-Lopez A , Plane J M C. Novel iodine chemistry in the marine boundary layer [J]. Geophys. Res. Lett., 2004, 31(4): L04112.
[16] Mcfiggans G, Coe H, Burgess R, et al. Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine [J]. Atmos. Chem. Phys., 2004, 4(1): 701-713.
[17] Saiz-Lopez A, Plane J M C, Mcfiggans G, et al. Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation [J]. Atmos. Chem. Phys., 2006, 6(4): 883-895.
[18] Palmer C J, Anders T L, Carpenter L J, et al. Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle production [J]. Environ. Chem., 2005, 2(4): 282-290.
[19] Leigh R J, Ball S M, Whitehead J, et al. Measurements and modelling of molecular iodine emissions, transport and photodestruction in the coastal region around Roscoff [J]. Atmos. Chem. Phys. Disc., 2009, 10(23): 11823-11838.
[20] Jammoul A, Dumas S, D'Anna B, et al. Photoinduced oxidation of sea salt halides by aromatic ketones: a source of halogenated radicals [J]. Atmos. Chem. Phys., 2009, 9(13): 4229-4237.
[21] Martino M, Mills G P, Woeltjen J, et al. A new source of volatile organoiodine compounds in surface seawater [J]. Geophys. Res. Lett., 2009, 36(1): 329-342.
[22] Reeser D I, Jammoul A, Clifford D, et al. Photoenhanced reaction of ozone with chlorophyll at the seawater surface [J]. J. Phys. Chem. C., 2009, 113(6): 2071-2077.
[23] Jones C E , Carpenter L J. Solar photolysis of CH2I2, CH2ICl, and CH2IBr in water, saltwater, and seawater [J]. Environ. Sci. Technol., 2005, 39(16): 6130-6137.
[24] Bell N, Hsu L, Jacob D J, et al. Methyl iodide: atmospheric budget and use as a tracer of marine convection in global models [J]. J. Geophy. Res.: Atmos., 2002, 107(D17): ACH 8-1-ACH 8-12.
[25] O'Dowd C D, Jimenez J L, Bahreini R, et al. Marine aerosol formation from biogenic iodine emissions [J]. Nature, 2002, 417(6889): 632-636.
[26] Glasow R V, Crutzen P J. Model study of multiphase DMS oxidation with a focus on halogens [J]. Atmos. Chem. Phys., 2004, 4(3): 589-608.
[27] Baker A R, Tunnicliffe C, Jickells T D. Iodine speciation and deposition fluxes from the marine atmosphere [J]. J. Geophy. Res.: Atmos., 2001, 106(D22): 28743-28749.
[28] Saunders R W, Plane J M C. Fractal growth modelling of I2O5 nanoparticles [J]. J. Aerosol Sci., 2006, 37(12): 1737-1749.
[29] Bale C S E, Ingham T, Commane R, et al. Novel measurements of atmospheric iodine species by resonance fluorescence [J]. J. Atmos. Chem., 2008, 60(1): 51-70.
[30] Martín J C G, Blahins J, Gross U, et al. In situ detection of atomic and molecular iodine using resonance and off-resonance fluorescence by lamp excitation: ROFLEX [J]. Atmos. Meas. Tech., 2011, 3(4): 29-45.
[31] Kürten A, Bergen A, Heinritzi M, et al. Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany [J]. Atmos. Chem. Phys., 2016, 16(19): 12793-12813.
[32] Sipil? M, Sarnela N, Jokinen T, et al. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3 [J]. Nature, 2016, 537(7621): 532.
[33] Saiz-Lopez A, Chance K, Liu X, et al. First observations of iodine oxide from space [J]. Geophys. Res. Lett., 2007, 34(12): L12812.
[34] Schonhardt A, Richter A, Wittrock F, et al. Observations of iodine monoxide (IO) columns from satellite [J]. Atmos. Chem. Phys., 2008, 8(3): 637-675.
[35] Kaltsoyannis N, Plane J M. Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO2, I2O3, I2O4 and I2O5) of importance in the atmosphere [J]. Phys. Chem. Chem., 2008, 10(13): 1723-1733.
[36] Plane J M, Joseph D M, Allan B J, et al. An experimental and theoretical study of the reactions OIO+NO and OIO+OH [J]. J. Phys. Chem. A., 2006, 110(1): 93-100.
[37] Dillon T J, Tucceri M E, Sander R, et al. LIF studies of iodine oxide chemistry. Part 3. Reactions IO + NO3 --> OIO + NO2, I + NO3 --> IO + NO2, and CH2I + O2 --> (products): implications for the chemistry of the marine atmosphere at night [J]. Phys. Chem. Chem. Phys., 2008, 10(11): 1540-1554.
[38] Martín J C G, Ashworth S H, Mahajan A S, et al. Photochemistry of OIO: Laboratory study and atmospheric implications [J]. Geophys. Res. Lett., 2009, 36(9): 117-128.
[39] Gravestock T, Blitz M A, Heard D E. Kinetics study of the reaction of iodine monoxide radicals with dimethyl sulfide [J]. Phys. Chem. Chem. Phys., 2005, 7(10): 2173-2181.
[40] Saizlopez A, Shillito J A, Coe H, et al. Measurements and modelling of I2, IO, OIO, BrO and NO3 in the mid-latitude marine boundary layer [J]. Atmos. Chem. Phys., 2006, 6(6): 1513-1528.
[41] Saunders R W, Kumar R, Gómez Martín J C, et al. Studies of the formation and growth of aerosol from molecular iodine precursor
[J]. Z. Phys. Chem., 2010, 224(7-8): 1095-1117.
[42] Kaiho T. Iodine Chemistry and Applications [M]. John Wiley & Sons, Inc., 2014.
[43] Sellegri K, Yoon Y J, Jennings S G, et al. Quantification of coastal new ultrafine particles formation from in situ and chamber measurements during the BIOFLUX campaign [J]. Environ. Chem., 2006, 2(4): 260-270.
[44] Pirjola L, O'Dowd C D, Yoon Y J, et al. Modelling iodine particle formation and growth from seaweed in a chamber [J]. Environ. Chem., 2005, 2(4): 271-281.
[45] Moore R M, Webb M, Tokarczyk R, et al. Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures [J]. J. Geophy. Res.: Atmos., 1996, 101(C9): 20899-20908.
[46] Moredapi?eiro A, Romaríshortas V, Bermejobarrera P. A review on iodine speciation for environmental, biological and nutrition fields
[J]. J. Anal. At. Spectrom., 2011, 26(26): 2107-2152.
[47] Bertine K K, Goldberg E D. Trace elements in clams, mussels, and shrimp [J]. Oceanol. Limnol., 1972, 17(6): 877-884.
[48] Wu D, Du J, Deng H, et al. Estimation of atmospheric iodine emission from coal combustion [J]. Int. J. Environ. Sci. Technol., 2014, 11(2): 357-366.
[49] Butler J H, King D B, Lobert J M, et al. Oceanic distributions and emissions of short-lived halocarbons [J]. Global Biogeochem. Cy., 2007, 21(1): 125-141.
[50] Chen Y, Zhuang G S, Guo Z G, et al. Atmospheric desposition of nutrients and trace elements to the coastal oceans: a review [J]. Adv. Ear. Sci., 2010, 25(7): 682-690.
[51] Blake N J, Blake D R, Chen T Y, et al. Distribution and seasonality of selected hydrocarbons and halocarbons over the western Pacific basin during PEM-West A and PEM-West B [J]. J. Geophy. Res.: Atmos., 1998, 102(D23): 28315-28331.
[52] Yokouchi Y, Nojiri Y, Barrie L A, et al. Atmospheric methyl iodide: High correlation with surface seawater temperature and its implications on the sea-to-air flux [J]. J. Geophy. Res.: Atmos., 2001, 106(D12): 12661-12668.
[53] Yokouchi Y, Osada K, Wada M, et al. Global distribution and seasonal concentration change of methyl iodide in the atmosphere
[J]. J. Geophy. Res.: Atmos., 2008, 113(D18): 1044-1044.
[54] Archer S D, Goldson L E, Liddicoat M I, et al. Marked seasonality in the concentrations and sea-to-air flux of volatile iodocarbon compounds in the western English Channel [J]. J. Geophy. Res.: Oceans, 2007, 112(C8): 271-289.
[55] Cohan D S, Sturrock G A, Biazar A P, et al. Atmospheric methyl iodide at Cape Grim, Tasmania, from AGAGE observations [J]. J. Atmos. Chem., 2003, 44(2): 131-150.
[56] Sive B C, Varner R K, Mao H, et al. A large terrestrial source of methyl iodide [J]. Geophys. Res. Lett., 2007, 34(17): 251-270.
[57] Klick S. Seasonal variations of biogenic and anthropogenic halocarbons in seawater from a coastal site [J]. Limnol. Oceanol., 1992, 37(7): 1579-1585.
[58] Jones C E, Hornsby K E, Sommariva R, et al. Quantifying the contribution of marine organic gases to atmospheric iodine [J]. Geophys. Res. Lett., 2010, 37(18): 109-118.
[59] Martino M, Liss P S, Plane J M. The photolysis of dihalomethanes in surface seawater [J]. Environ. Sci. Technol., 2005, 39(18): 7097-7101.
[60] Jones C E, Carpenter L J. Chemical destruction of CH3I, C2H5I, 1-C3H7I, and 2-C3H7I in saltwater [J]. Geophys. Res. Lett., 2007, 34(13): 256-260.
[61] Küpper F C, Feitersm M C. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry [J]. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(19): 6954-6958.
[62] Garland J A, Elzerman A W, Penkett S A. The mechanism for dry deposition of ozone to seawater surfaces [J]. J. Geophy. Res., 1980, 85(85): 7488-7492.
[63] Garland J A, Curtis H. Emission of iodine from the sea surface in the presence of ozone [J]. J. Geophy. Res., 1981, 86(C4): 3183-3186.
[64] Klick S, Abrahamsson K. Biogenic volatile iodated hydrocarbons in the ocean [J]. J. Geophy. Res.: Oceans, 1992, 971(C8): 12683-12687.
[65] Moore R M, Tokarczyk R. Volatile biogenic halocarbons in the northwest Atlantic [J]. Global Biogeochem. Cy., 1993, 7(1): 195-210.
[66] Burkholder J B, Curtius J, Ravishankara A R, et al. Laboratory studies of the homogeneous nucleation of iodine oxides [J]. Atmos. Chem. Phys., 2004, 4(1): 19-43.
[67] Gómez Martín J C, Gálvez O, Baezaromero M T, et al. On the mechanism of iodine oxide particle formation [J]. Phys. Chem. Chem. Phys., 2013, 15(37): 15612-15622.
[68] Kumar R, Saunders R W , Mahajan A S, et al. Physical properties of iodate solutions and the deliquescence of crystalline I2O5 and HIO3 [J]. Atmos. Chem. Phys., 2010, 10(9): 12251-12260.
[69] Sander S P, Golden D M, Kurylo M J, et al. Chemical kinetics and photochemical data for use in: atmospheric studies, evaluation number 15 [R]. Jet Propulsion Laboratory Publication, 2006.
[70] Atkinson R, Baulch D L, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry:Volume III – gas phase reactions of inorganic halogens [J]. Atmos. Chem. Phys., 2007, 7(4): 981-1191.
[71] Gómez Martín J C, Spietz P, Burrows J P. Kinetic and mechanistic studies of the I2/O3 photochemistry [J]. J. Phys. Chem. A., 2007, 111(2): 306-320.
[72] M?kel? J M, Hoffmann T, Holzke C, et al. Biogenic iodine emissions and identification of end products in coastal ultrafine particles during nucleation bursts [J]. J. Geophy. Res.: Atmos., 2002, 107(D19): PAR 14-1-PAR 14-14.
[73] Cotter E S N, Booth N J, Canosamas C E, et al. Reactions of Cl atoms with CH3I, C2H5I, 1-C3H7I, 2-C3H7I and CF3I: kinetics and atmospheric relevance [J]. Phys. Chem. Chem. Phys., 2001, 3(3): 402-408.
[74] Enami S, Sakamoto Y, Yamanaka T, et al. Reaction Mechanisms of IO Radical Formation from the Reaction of CH3I with Cl Atom in the Presence of O2 [J]. Bull. Chem. Soc. Jpn., 2008, 81(10): 1250-1257.
[75] Cotter E S N, Canosa-Mas C E, Manners C R, et al. Kinetic study of the reactions of OH with the simple alkyl iodides: CH3I, C2H5I, 1-C3H7I and 2-C3H7I [J]. Atmos. Environ., 2003, 37(8): 1125-1133.
[76] Carl S A, Crowley J N. 298 K rate coefficients for the reaction of OH with i-C3H7I, n-C3H7I and C3H8 [J]. Atmos. Chem. Phys. Disc., 2001, 1(1): 1-7.
[77] Nakano Y, Ukeguchi H, Ishiwata T. Rate constant of the reaction of NO3, with CH2I2, measured with use of cavity ring-down spectroscopy [J]. Chem. Phys., 2006, 430(4-6): 235-239.
[78] Enami S, Hashimoto S, Kawasaki M, et al. Observation of adducts in the reaction of Cl atoms with XCH2I (X = H, CH3, Cl, Br, I) using cavity ring-down spectroscopy [J]. J. Phys. Chem. A., 2005, 109(8): 1587-1593
[79] Enami S, Yamanaka T, Hashimoto S, et al. Direct observation of adduct formation of alkyl and aromatic iodides with Cl atoms using cavity ring-down spectroscopy [J]. J. Phys. Chem. A., 2005, 109(27): 6066-6070.
[80] Gravestock T J, Blitz M A, Bloss W J, et al. A multidimensional study of the reaction CH2I+O2: products and atmospheric implications [J]. Chem. Phys. Chem., 2010, 11(18): 3928-3941.
[81] Dookwah-Roberts V, Nicovich J M, Wine P H. Spectroscopic and kinetic study of the gas-phase CH3I-Cl and C2H5I-Cl adducts [J]. J. Phys. Chem. A., 2008, 112(39): 9535-9543.
[82] Piety C A, Soller R, Nicovich J M, et al. Kinetic and mechanistic study of the reaction of atomic chlorine with methyl bromide over an extended temperature range [J]. Chem. Phys., 1998, 231(231): 155-169.
[83] Orlando J J, Piety C A, Nicovich J M, et al. Rates and mechanisms for the reactions of chlorine atoms with iodoethane and 2-iodopropane [J]. J. Phys. Chem. A., 2005, 109(30): 6659-6675.
[84] Chambers R M, Heard A C, Wayne R P. Inorganic gas-phase reactions of the nitrate radical: iodine + nitrate radical and iodine atom + nitrate radical [J]. J. Phys. Chem., 1992, 96(8): 3321-3331.
[85] Mahajan A S, Oetjen H, Saiz-Lopez A, et al. Reactive iodine species in a semi-polluted environment [J]. J. Geophy. Res. Lett., 2009, 36(16): 554-570.
[86] Wayne RP, Poulet G, Biggs P, et al. Halogen oxides: Radicals, sources and reservoirs in the laboratory and in the atmosphere [J]. Atmos. Environ., 1995, 29(20): 2677-2881.
[87] Enami S, Sakamoto Y, Yamanaka T, et al. Reaction mechanisms of IO radical formation from the reaction of CH3I with Cl atom in the presence of O2 [J]. Bull. Chem. Soc. Jpn., 2008, 81(10): 1250-1257.
[88] Enami S, Nakano Y, Hashimoto S, et al. Reactions of Cl atoms with dimethyl sulfide:?a theoretical calculation and an experimental study with cavity ring-down spectroscopy [J]. J. Phys. Chem. A., 2004, 108(39): 7785-7789.
[89] Eskola A J, Wojcik-Pastuszka D, Ratajczak E, et al. Kinetics of the reactions of CH2Br and CH2I radicals with molecular oxygen at atmospheric temperatures [J]. Phys. Chem. Chem. Phys., 2006, 8(12): 1416-1424.
[90] Stefanopoulos V G, Papadimitriou V C, Lazarou Y G, et al. Absolute rate coefficient determination and reaction mechanism investigation for the reaction of Cl atoms with CH2I2 and the oxidation mechanism of CH2I radicals [J]. J. Phys. Chem. A., 2008, 112(7): 1526-1535.
[91] Sehested J, Ellermann T, Nielsen O J. A spectrokinetic study of CH2I and CH2IO2 radicals [J]. Int. J. Chem. Kinet., 1994, 26(2): 259-272.
[92] Dillon T J, Tucceri M E, Crowley J N. Laser induced fluorescence studies of iodine oxide chemistry. Part II. The reactions of IO with CH3O2, CF3O2 and O3 [J]. Phys. Chem. Chem. Phys., 2006, 8(44): 5185-5198.
[93] Larin I K, Nevozhai D V, Spasskii A I, et al. Measurement of rate constants for the reaction of iodine monoxide with ozone [J]. Kinet. Catal., 1999, 40(4): 435-442.
[94] Gómez Martín J C, Plane J M C. Determination of the O–IO bond dissociation energy by photofragment excitation spectroscopy [J]. Chem. Phys. Lett., 2009, 474(1-3): 79-83.
[95] Drougas E, Kosmas A M. Computational studies of (HIO3) isomers and the HO2 + IO reaction pathways [J]. J. Phys. Chem. A., 2005, 109(31): 3887-3892.
[96] Maguin F, Laverdet G, Bras G L, et al. Kinetic study of the reactions iodine monoxide + hydroperoxo and iodine monoxide + nitrogen dioxide at 298 K [J]. J. Phys. Chem., 2002, 96(4): 1775-1780.
[97] Enami S, Hoshino Y, Kawasaki M, et al. A kinetic study of the gas-phase reactions of OIO with NO, NO2, and Cl2 [J]. Int. J. Chem. Kinet., 2007, 39(12): 688-693.
[98] Papayannis D K, Kosmas A M. Theoretical investigation of the mechanism of the reaction IO+ NO→I + NO2 [J]. Chem. Phys Lett., 2006, 432(4): 391-397.
[99] Nakano Y, Enami S, Nakamichi S, et al. Temperature and pressure dependence study of the reaction of IO radicals with dimethyl sulfide by cavity ring-down laser spectroscopy [J]. J. Phys. Chem. A., 2003, 107(33): 6381-6387.
[100] Drougas E, Kosmas A M. Ab initio characterization of (CH3IO3) isomers and the CH3O2 + IO reaction pathways [J]. J. Phys. Chem. A., 2007, 111(17): 3402-3408.
[101] Wren S N, Kahan T F, Jumaa K B, et al. Spectroscopic studies of the heterogeneous reaction between O3 (g) and halides at the surface of frozen salt solutions [J]. J. Geophy. Res.: Atmos., 2010, 115(D16): 751-763.
[102] O'Driscoll P, Lang K, Minogue N, et al. Freezing halide ion solutions and the release of interhalogens to the atmosphere [J]. J. Phys. Chem. A, 2006, 110(14): 4615-4618.
[103] O'Driscoll P, Minogue N, Takenaka N, et al. Release of nitric oxide and iodine to the atmosphere from the freezing of sea-salt aerosol components [J]. J. Phys. Chem. A., 2008, 112(8): 1677-1682.
[104] Martino M, Liss P S, Plane J M C. Wavelength-dependence of the photolysis of diiodomethane in seawater [J]. J. Geophy. Res. Lett., 2006, 33(6): 7921-7922.
[105] Wada R, Beames J M, Orr-Ewing A J. Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer [J]. J. Atmos. Chem., 2007, 58(1): 69-87.
[106] Allan B J, Plane J M C, Mcfiggans G. Observations of OIO in the remote marine boundary layer [J]. J. Geophy. Res. Lett., 2001, 28(10): 1945-1948.
[107] Read K A, Mahajan A S, Carpenter L J, et al. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean [J]. Nature, 2008, 453(7199): 1232-1235.
[108] Martinez M, Arnold T, Perner D. The role of bromine and chlorine chemistry for arctic ozone depletion events in Ny-?lesund and comparison with model calculations [J]. Ann. Geophys., 1999, 17(7): 941-956.
[109] Mahajan A S, Marvin S, Hilke O, et al. Evidence of reactive iodine chemistry in the Arctic boundary layer [J]. J. Geophys. Res.: Atmos., 2010, 115(D20): 303-314.
[110] Amachi S, Kamagata Y, Kanagawa T, et al. Bacteria mediate methylation of iodine in marine, and terrestrial environments [J]. Appl. Environ. Microbiol., 2001, 67(6): 2718-2722.
[111] Smoydzin L. Modelling Gas Phase and Aerosol Phase Chemistry in the Atmospheric Boundary Layer [D]. Heidelberg: Doctorial Dissertation of University of Heidelberg, 2008.
[112] Solomon S, Garcia R R, Ravishankara A R. On the role of iodine in ozone depletion [J]. J. Geophy. Res.: Atmos., 1994, 99(992): 20491-20500.
[113] Wennberg P O, Brault J W, Hanisco T F. The atmospheric column abundance of IO: Implications for stratospheric ozone [J]. J. Geophy. Res. D., 1997, 102 (D7): 8887-8898.
[114] O'Dowd C D, H?meri K, M?kel? J M, et al. A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements [J]. J. Geophy. Res.: Atmos., 2002, 107(D19): PAR 1-1–PAR 1-16.
[115] Heard D E, Read K A, Methven J, et al. The North Atlantic Marine Boundary Layer Experiment (NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002 [J]. Atmos. Chem. Phys., 2006, 6(8): 2241-2272.
[116] Jimenez J L, Bahreini R, Cocker D R, et al. New particle formation from photooxidation of diiodomethane (CH2I2) [J]. J. Geophy. Res.: Atmos., 2003, 108(D23): 4318-4343.
[117] Cox R A, Coker G B. Absorption cross section and kinetics of IO in the photolysis of CH3I in the presence of ozone [J]. J. Phys. Chem., 1983, 87: 4478-4484.
[118] Daehlie G, Kjekshus A. Iodine oxides I on I2O3, SO3, I2O3, 4SO3, H2O, I2O3, SEO3 and I2O4 [J]. Acta Chem. Scand., 1964, 18(1): 144.
[119] Katzin L I. Note on the absorption spectrum of iodine in oxygenated solvents and the dissociation of iodine water [J]. J. Chem. Phys., 1953, 21(3): 490-491.
[120] Mcfiggans G, Artaxo P, Baltensperger U, et al. The effect of physical and chemical aerosol properties on warm cloud droplet activation [J]. Atmos. Chem. Phys., 2006, 6(9): 2593-2649.
[121] Peng B X, Li L, Wu D S. Distribution of bromine and iodine in thermal power plant [J]. J. Coal. Sci. Eng. (China), 2013, 19(3): 387-391.
[122] Liu Wei, Yang Hongxia, Li Bing, The application of nductively coupled plasma mass spectrometry in the distribution characteristics of high iodine area [J]. Journal of Inner Mongolia Normal University: Natural Science Edition, 2014(6): 703-707(in Chinese).
刘 崴, 杨红霞, 李 冰. 电感耦合等离子体质谱在高碘区碘含量分布特征中的应用 [J]. 内蒙古师大学报: 自然汉文版, 2014(6): 703-707.
[123] Xu S Q, Xie Z Q, Liu W, et al. Extraction and determination of total bromine, iodine, and their species in atmospheric aerosol [J]. Chin. J. Anal. Chem., 2010, 38(2): 219-224.
[124] Gao Y, Sun M, Wu X, et al. Concentration characteristics of bromine and iodine in aerosols in Shanghai, China [J]. Atmos. Environ., 2010, 44(34): 4298-4302. |