Journal of Atmospheric and Environmental Optics ›› 2018, Vol. 13 ›› Issue (5): 342-354.
Previous Articles Next Articles
MA Hongliang1, 2, SUN Mingguo2, WU Yiheng1, WANG Zhendong1, CAO Zhensong2*
Online:
2018-09-28
Published:
2018-09-28
About author:
马宏亮(1987-),男,山东济宁人,博士,讲师,主要从事大气分子高分辨率吸收光谱特性方面的研究。
Supported by:
Supported by National Natural Science Foundation of China (国家自然科学基金, 41805014),Youth Foundation for Innovation and Promotion of the Chinese Academy of Sciences,(中国科学院青年创新促进会基金 2015264)
CLC Number:
MA Hong-Liang, SUN Ming-Guo, WU Xi-Heng, WANG Zhen-Dong, CAO Zhen-Song. Research Progress of Water Vapour Continuum in the Infrared Spectral Regions[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 342-354.
[1] Clough S A, Iacono M J, Moncet J L. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor [J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15761-15785. [2] Kilsby C G, Edwards D P, Saunders R W, et al. Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons [J]. Quarterly Journal of the Royal Meteorological Society, 1992, 118(506): 715-748. [3] Shine K P, Ptashnik I V, Radel G. The water vapour continuum: Brief history and recent developments [J]. Surveys in Geophysics, 2012, 33(3-4): 535-555. [4] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50. [5] Shine K P, Campargue A, Mondelain D, et al. The water vapour continuum in near-infrared windows–Current understanding and prospects for its inclusion in spectroscopic databases [J]. Journal of Molecular Spectroscopy, 2016, 327: 193-208. [6] Viktorova A A, Zhevakin S A. Absorption of microradiowaves in air by the dimers of water vapor (Microradiowave absorption in air by water vapor dimers) [C]//AKADEMIIA NAUK SSSR, DOKLADY, 1966, 171: 1061-1064. [7] Varanasi P, Chou S, Penner S S. Absorption coefficients for water vapor in the 600–1000 cm-1 region [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1968, 8(8): 1537-1541. [8] Arefev V N, Dianov-Klokov V I. Attenuation of 10.6-μm radiation by water vapor and the role of (H2O)2 dimers [J]. Optics and Spectroscopy, 1977, 42(5): 488-492. [9] Vigasin A A. Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 64(1): 25-40. [10] Ptashnik I V, Smith K M, Shine K P, et al. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm?1: Evidence for water dimmers [J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(602): 2391-2408. [11] Ptashnik I V, Shine K P, Vigasin A A. Water vapour self-continuum and water dimers. 1. Analysis of recent work [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011(112): 1286-1303. [12] Elsasser W M. Far infrared absorption of atmospheric water vapor [J]. Astrophysical Journal, 1938, 87(5): 497-507. [13] Clough S A, Kneizys F X, Davies R W. Line shape and the water vapor continuum [J]. Atmospheric Research, 1989, 23 (3): 229-241. [14] Tipping R H, Ma Q. Theory of the water vapor continuum and validations [J]. Atmospheric Research, 1995, 36(1-2): 69-94. [15] Ma Q, Tipping R H, Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines [J]. The Journal of Chemical Physics, 2008, 128(12): 124313. [16] Bogdanova J V, Rodimova O B. Line shape in far wings and water vapor absorption in a broad temperature interval [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2298-2307. [17] Baranov Y I, Lafferty W J. The water vapour self-and water-nitrogen continuum absorption in the 1000 and 2500 cm?1 atmospheric windows [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1968): 2578-2589. [18] Hettner G. über das ultrarote Absorptionsspektrum des Wasserdampfes [J]. Annalen der Physik, 1918, 360(6): 476-496. [19] Elsasser W M. Far infrared absorption of atmospheric water vapor [J]. The Astrophysical Journal, 1938, 87: 497. [20] Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μm region [C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1951, 206(1084): 87-107. [21] Anthony R. Atmospheric absorption of solar infrared radiation [J]. Physical Review, 1952, 85(4): 674. [22] Cowling T G. The absorption of water vapour in the far infra-red [J]. Reports on Progress in Physics, 1942, 9(1): 29. [23] Strong J. Study of atmospheric absorption and emission in the infrared spectrum [J]. Journal of the Franklin Institute, 1941, 232(1): 1-22. [24] Roach W T, Goody R M. Absorption and emission in the atmospheric window from 770 to 1250 cm?1 [J]. Quarterly Journal of the Royal Meteorological Society, 1958, 84(362): 319-333. [25] Bignell K, Saiedy F, Sheppard P A. On the atmospheric infrared continuum [J]. Journal of the Optical Society of America, 1963, 53(4): 466-479. [26] Fomin V V, Tvorogov S D. Formation of the far wings contour of spectral lines broadened by a foreign gas; analysis of exponential decrease of continuous absorption beyond the band head of the 4.3-μm, band of CO2 [J]. Applied Optics, 1973, 12(3): 584-589. [27] Tvorogov S D, Nesmelova L I. Radiative processes in the band wings of atmospheric gases [J]. Akademiia Nauk SSSR Fizika Atmosfery i Okeana, 1977, 12: 627-633. [28] Burch D E, Gryvnak D A, Pembrook J D. Investigation of the absorption of infrared radiation by atmospheric gases [R]. Philco-Ford Corp newport Beach CA Aeronutronic DIV, 1970. [29] Gryvnak D A, Burch D E. Infrared Absorption by CO2 and H2O [R]. Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV, 1978. [30] Fano U. Pressure broadening as a prototype of relaxation [J]. Physical Review, 1963, 131(1): 259. [31] Rosenkranz P W. Pressure broadening of rotational bands. I. A statistical theory [J]. The Journal of Chemical Physics, 1985, 83(12): 6139-6144. [32] Rosenkranz P W. Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm?1 [J]. The Journal of Chemical Physics, 1987, 87(1): 163-170. [33] Ma Q, Tipping R H. A far wing line shape theory and its application to the water continuum absorption in the infrared region. I [J]. The Journal of Chemical Physics, 1991, 95(9): 6290-6301. [34] Ma Q, Tipping R H. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III [J]. The Journal of chemical physics, 1992, 97(2): 818-828. [35] Ma Q, Tipping R H. The averaged density matrix in the coordinate representation: application to the calculation of the far-wing line shapes for H2O [J]. The Journal of Chemical Physics, 1999, 111(13): 5909-5921. [36] Ma Q, Tipping R H. The frequency detuning correction and the asymmetry of line shapes: the far wings of H2O–H2O [J]. The Journal of Chemical Physics, 2002, 116(10): 4102-4115. [37] Cormier J G, Ciurylo R, Drummond J R. Cavity ringdown spectroscopy measurements of the infrared water vapor continuum [J]. The Journal of Chemical Physics, 2002, 116(3): 1030-1034. [38] Bogdanova J V, Rodimova O B. Line shape in far wings and water vapor absorption in a broad temperature interval [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2298-2307. [39] Klimeshina T E, Rodimova O B. Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 119: 77-83. [40] Penner S S, Varanasi P. Spectral absorption coefficients in the pure rotation spectrum of water vapor [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1967, 7(4): 687-690. [41] Varanasi P, Chou S, Penner S S. Absorption coefficients for water vapor in the 600–1000 cm-1 region [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1968, 8(8): 1537-1541. [42] Bignell K J. The water-vapour infra‐red continuum [J]. Quarterly Journal of the Royal Meteorological Society, 1970, 96(409): 390-403. [43] Aref’ev V N, Dianov-Klokov V I, Radionov V F, et al. Laboratory measurements of attenuation of CO/sub2/laser radiation by pure water vapor [J]. Optics and Spectroscopy, 1975, 39(5).(页码?) [44] Aref’ev V N, Dianov-Klokov V I. Attenuation of 10.6-μm radiation by water vapor and the role of (H2O)2 dimers [J]. Optics and Spectroscopy, 1977, 42: 488-492. [45] Hinderling J, Sigrist M W, Kneubühl F K. Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window [J]. Infrared physics, 1987, 27(2): 63-120. [46] Vaida V, Daniel J S, Kjaergaard H G, et al. Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer [J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127(575): 1627-1643. [47] Schofield D P, Kjaergaard H G. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer [J]. Physical Chemistry Chemical Physics, 2003, 5(15): 3100-3105. [48] Kjaergaard H G, Garden A L, Chaban G M, et al. Calculation of vibrational transition frequencies and intensities in water dimer: comparison of different vibrational approaches [J]. The Journal of Physical Chemistry A, 2008, 112(18): 4324-4335. [49] Garden A L, Halonen L, Kjaergaard H G. Calculated band profiles of the OH-stretching transitions in water dimer [J]. The Journal of Physical Chemistry A, 2008, 112(32): 7439-7447. [50] Ptashnik I V, Smith K M, Shine K P, et al. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm?1: Evidence for water dimmers [J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(602): 2391-2408. [51] Paynter D J, Ptashnik I V, Shine K P, et al. Pure water vapor continuum measurements between 3100 and 4400 cm?1: Evidence for water dimer absorption in near atmospheric conditions [J]. Geophysical Research Letters, 2007, 34(12). (页码?) [52] Vigasin A A. On the spectroscopic manifestations of weakly bound complexes in rarefied gases [J]. Chemical Physics Letters, 1985, 117(1): 85-88. [53] Vigasin A A. Bound, metastable and free states of bimolecular complexes [J]. Infrared Physics, 1991, 32: 461-470. [54] Vigasin A A. Bimolecular absorption in atmospheric gases [J]. Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, 2003, 27: 23-47. [55] Vigasin A A. On the possibility to quantify contributions from true bound and metastable pairs to infrared absorption in pressurised water vapour [J]. Molecular Physics, 2010, 108(18): 2309-2313. [56] Epifanov S Y, Vigasin A A. Subdivision of phase space for anisotropically interacting water molecules [J]. Molecular Physics, 1997, 90(1): 101-106. [57] Schenter G K, Kathmann S M, Garrett B C. Equilibrium constant for water dimerization: analysis of the partition function for a weakly bound system [J]. The Journal of Physical Chemistry A, 2002, 106(8): 1557-1566. [58] Lokshtanov S E, Ivanov S V, Vigasin A A. Statistical physics partitioning and classical trajectory analysis of the phase space in CO2–Ar weakly interacting pairs [J]. Journal of Molecular Structure, 2005, 742(1): 31-36. [59] Kjaergaard H G, Robinson T W, Howard D L, et al. Complexes of importance to the absorption of solar radiation [J]. The Journal of Physical Chemistry A, 2003, 107(49): 10680-10686. [60] Baranov Y I, Lafferty W J, Ma Q, et al. Water-vapor continuum absorption in the 800–1250 cm?1 spectral region at temperatures from 311 to 363 K [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(12): 2291-2302. [61] Ptashnik I V, McPheat R A, Shine K P, et al. Water vapor self‐continuum absorption in near‐infrared windows derived from laboratory measurements [J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D16).(页码?) [62] Roberts R E, Selby J E A, Biberman L M. Infrared continuum absorption by atmospheric water vapor in the 8–12-μm window [J]. Applied Optics, 1976, 15(9): 2085-2090. [63] Burch D E. Continuum absorption by atmospheric H2O [C]. Proceedings of SPIE, Atmospheric Transmission, 1981, 277: 28-40. [64] Burch D E, Alt R L. Continuum Absorption by H2O in the 700-1200 cm-1 and 2400-2800 cm-1 Windows [R]. Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV, 1984. [65] Burch D E. Absorption by H2O in Narrow Windows between 3000 and 4200 cm-1 [R]. Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV, 1985. [66] Van Vleck J H, Huber D L. Absorption, emission, and linebreadths: A semihistorical perspective [J]. Reviews of Modern Physics, 1977, 49(4): 939. [67] Paynter D J, Ptashnik I V, Shine K P, et al. Laboratory measurements of the water vapor continuum in the 1200–8000 cm?1 region between 293 K and 351 K [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D21). [68] Cormier J G, Hodges J T, Drummond J R. Infrared water vapor continuum absorption at atmospheric temperatures [J]. The Journal of Chemical Physics, 2005, 122(11): 114309. [69] Mlawer E J, Payne V H, Moncet J L, et al. Development and recent evaluation of the MT_CKD model of continuum absorption [J]. Philosophical Transactions of the Royal Society A, 2012, 370(1968): 2520-2556. [70] Ptashnik I V, Petrova T M, Ponomarev Y N, et al. Near-infrared water vapour self-continuum at close to room temperature [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 120: 23-35. [71] Rowe P M, Walden V P. Improved measurements of the foreign-broadened continuum of water vapor in the 6.3 μm band at ?30°C [J]. Applied Optics, 2009, 48(7): 1358-1365. [72] Green P D, Newman S M, Beeby R J, et al. Recent advances in measurement of the water vapour continuum in the far-infrared spectral region [J]. Philosophical Transactions of the Royal Society A, 2012, 370(1968): 2637-2655. [73] Baranov Y I. The continuum absorption in H2O+N2 mixtures in the 2000–3250cm?1 spectral region at temperatures from 326 to 363K [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(14): 2281-2286. [74] Fulghum S F, Tilleman M M. Interferometric calorimeter for the measurement of water-vapor absorption [J]. Journal of the Optical Society of America B, 1991, 8(12): 2401-2413. [75] Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm [C]. Proceedings of SPIE, 2013, 8898: 889808. [76] Orphal J, Ruth A A. High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source [J]. Optics Express, 2008, 16(23): 19232-19243. [77] Ptashnik I V, McPheat R A, Shine K P, et al. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements [J]. Philosophical Transactions of the Royal Society A, 2012, 370(1968): 2557-2577. [78] Ptashnik I V, Petrova T M, Ponomarev Y N, et al. Water vapor continuum absorption in near-IR atmospheric windows [J]. Atmospheric and Oceanic Optics, 2015, 28: 115-120. [79] Morville J, Kassi S, Chenevier M, et al. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking [J]. Applied Physics B: Lasers and Optics, 2005, 80(8): 1027-1038. [80] Kerstel E R T, Iannone R Q, Chenevier M, et al. A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications [J]. Applied Physics B: Lasers and Optics, 2006, 85(2): 397-406. [81] Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere [J]. Applied Optics, 1995, 34(15): 2765-2773. [82] Reichert L, Hernandez M D A, Burrows J P, et al. First CRDS-measurements of water vapour continuum in the 940 nm absorption band [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 105(2): 303-311. [83] Mondelain D, Aradj A, Kassi S, et al. The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 381-391. [84] Aldener M, Brown S S, Stark H, et al. Near-IR absorption of water vapor: Pressure dependence of line strengths and an upper limit for continuum absorption [J]. Journal of Molecular Spectroscopy, 2005, 232(2): 223-230. [85] Mondelain D, Manigand S, Kassi S, et al. Temperature dependence of the water vapor self‐continuum by cavity ring‐down spectroscopy in the 1.6 μm transparency window [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(9): 5625-5639. [86] Wu Jihua, Sun Fengyi, Pu Dasheng, et al. Laser photo-acoustic detection and its application to continuous absorption measurement of water vapour [J]. Chinese Journal of Lasers, 1982, 9(5): 101(in Chinese). 吴际华, 孙凤仪, 浦达生, 等. 激光光声探测技术及其在水气连续吸收测量中的应用 [J]. 中国激光, 1982, 9(5): 101. |
[1] | CAO Yanan , YUAN Ye , ZHENG Xiaoyi , GAO Jinlan. Water vapour distribution characteristics of Huaibei area in Anhui Province based on satellite observation [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(3): 269-278. |
[2] | WANG Yanbing, LIU Yirong∗. Theoretical Study on Mechanism of Nucleation of Phthalic Acid and Sulfuric Acid [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 372-379. |
[3] | SHI Yue, XIE Chen-Bo, TAN Min, WANG Bang-Xin, WU De-Cheng, LIU Dong, WANG Ying-Jian. Analysis of Error Sources on Water Vapour Observed by Raman Lidar [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(3): 170-177. |
[4] | LI Liang, FANG Yong-Hua, ZHAO Yan-Dong, YANG Min. Design of Infrared Spectrum Signal Acquisition System Based on FPGA [J]. Journal of Atmospheric and Environmental Optics, 2016, 11(4): 313-320. |
[5] | KANG Li, ZHU Wen-Yue. Research Progress of Supercontinuum Propagation in Atmosphere [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(6): 445-454. |
[6] | YUE Shuai-Ying, LIN Chen, GAO Jun-Yi. Development and Application of White-Light Lidar [J]. Journal of Atmospheric and Environmental Optics, 2010, 5(1): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||