Journal of Atmospheric and Environmental Optics ›› 2018, Vol. 13 ›› Issue (5): 355-363.
Previous Articles Next Articles
ZHANG Yang1, WEN Hui1, LIN Xiaoxiao1, CHEN Jiao2
Online:
2018-09-28
Published:
2018-09-28
Supported by:
Supported by National Natural Science Foundation of China (国家自然科学基金,41505114, 41775122, 40605102)
CLC Number:
ZHANG Yang, WEN Hui, LIN Xiao-Xiao, CHEN Jiao. Study of Atmospheric Aerosol Nucleation Mechanism by Organic Acid[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 355-363.
[1] Whitby K T. The physical characteristics of sulfur aerosols [J]. Atmospheric Environment(1967), 1978, 12(1): 135-159. [2] Hussein T, Maso M D, Petaja T, et al. Evaluation of an automatic algorithm for fitting the particle number size distributions [J]. Boreal Environment Research, 2005, 10(5): 337-355. [3] Merikanto J, Spracklen D V, Mann G W, et al. Impact of nucleation on global CCN [J]. Atmospheric Chemistry and Physics, 2009, 9(21): 8601-8616. [4] Yu F, Wang Z, Luo G, et al. Ion-mediated nucleation as an important global source of tropospheric aerosols [J]. Atmospheric Chemistry and Physics, 2008, 8(9): 2537-2554. [5] Leaitch W R, Bottenheim J W, Biesenthal T A, et al. A case study of gas-to-particle conversion in an eastern canadian forest [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D7): 8095-8111. [6] O'Dowd C, McFiggans G, Creasey D, et al. On the photochemical production of new particles in the coastal boundary layer [J]. Geophysical Research Letters, 1999, 26(12): 1707-1710. [7] Schillawski R D, Baumgardner D. A study of new particle formation and growth involving biogenic [J]. Journal of Geophysical Research, 1998, 103(D13): 16385-16396. [8] Holmes N S. A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications [J]. Atmospheric Environment, 2007, 41(10): 2183-2201. [9] Solomon S, Qin D, Manning M, et al. IPCC, Climate Change 2007: The Physical Scientific Basis [M]. New York: Cambridge University Press, 2007. [10] Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere [J]. Chemical Reviews, 2012, 112(3): 1957-2011. [11] Weber R J, McMurry P H, Mauldin R L, et al. New particle formation in the remote troposphere: A comparison of observations at various sites [J]. Geophysical Research Letters, 1999, 26(3): 307-310. [12] Napari I, Kulmala M, Vehkamäki H. Ternary nucleation of inorganic acids, ammonia, and water [J]. The Journal of Chemical Physics, 2002, 117(18): 8418-8425. [13] Yu F Q, Turco R. Case studies of particle formation events observed in boreal forests: implications for nucleation mechanisms [J]. Atmospheric Chemistry and Physics, 2008, 8: 6085-6102. [14] Vuollekoski H, Kerminen V–M, Anttila T, et al. Iodine dioxide nucleation simulations in coastal and remote marine environments [J]. Journal of Geophysical Research Atmospheres, 2009, 114(D2): D02206. [15] Kulmala M, Kerminen, V M. On the formation and growth of atmospheric nanoparticles [J]. Atmospheric Research, 2008, 90(2-4): 132-150. [16] Smith J N, Dunn M J, VanReken T M, et al. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth [J]. Geophysical Research Letters, 2008, 35(4): L04808. [17] Fiedler V, Dal Maso M, Boy M, et al. The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe [J]. Atmospheric Chemistry and Physics, 2005, 5(7): 1773-1785. [18] Boy M, Rannik U, Lehtinen K E J, et al. Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics [J]. Journal of Geophysical Research, 2003, 108(D21): 4667. [19] Nozière B, Kalberer M, Claeys M, et al. The Molecular identification of organic compouds in the atomsphere: State of the Art and Challenges [J]. Chemical Reviews, 2015, 115(10): 3919-3983. [20] Chebbi A, Carlier P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review [J]. Atmospheric Environment, 1996, 30(24): 4233-4249. [21] Souza S R, Vasconcellos P C, Carvalho L R F. Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in Sao Paulo City, Brazil[J]. Atmospheric Environment,1999, 33(16):2563-2574 [22] Gasparini R, Li R, Collins D R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol [J]. Atmospheric Environment, 2004, 38(20): 3285-3303. [23] Fan J, Zhang R. Atmospheric oxidation mechanism of isoprene [J]. Environmental Chemistry, 2004, 1(3): 140-149. [24] Zhang R. Getting to the critical nucleus of aerosol formation [J]. Science, 2010, 328(5984): 1366-1367. [25] Yi T, Li H, Weng T, et al. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography [J]. Analytica Chimica Acta, 2008, 626(1): 78-88. [26] Pio C A, Silva P A, Cerqueira M A, et al. Diurnal and seasonal emissions of volatile organic compounds from cork oak(Quercus suber) trees [J]. Atomspheric Enviroment, 2005, 39(10): 1817-1827. [27] Forstner H J L, Flagan R C, Seinfeld J H. Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition [J]. Environmental Science and Technology, 1997, 31(5): 1345-1358. [28] Jang M S, Kamens R M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene [J]. Environmental Science and Technology, 2001, 35(18): 3626-3639. [29] O’Dowd C D, Aalto P, Hameri K, et al. Aerosol formation: Atmospheric particles from organic vapours [J]. Nature, 2002, 416(6880): 497-498. [30] Kavouras I G, Mihalopoulos N, Stephanou E G. Formation of atmospheric particles from organic acids produced by forests [J]. Nature, 1998, 395: 683-686. [31] Ehn M, Junninen H, Petäjä T, et al. Composition and temporal behavior of ambient ions in the boreal forest [J]. Atmospheric Chemistry and Physics, 2010, 10(17): 8513-8530. [32] Junninen H, Ehn M, Petäjä T, et al. A high-resolution mass spectrometer to measure atmospheric ion composition [J]. Atmospheric.Measurement Techniques, 2010, 3(4): 1039-1053. [33] Jordan A, Haidacher S, Hanel G, et al, A high resolution and high sensitivity proton-transfer-reactiontime-of-flight mass spectrometer (PTR-TOF-MS) [J]. International Journal of Mass Spectrometry, 2009, 286 (2): 122-128. [34] Vanhanen J, Mikkilä J, Lehtipalo K, et al. Particle size magnifier for nano-CN detection [J]. Aerosol Science and Technology, 2011, 45(4): 533-542. [35] Kulmala M, Riipinen I, Sipila M, et al. Toward direct measurement of atmospheric nucleation [J]. Science, 2007, 318(5847): 89-92. [36] Wang S C, Flagan R C. Scanning electrical mobility spectrometer [J]. Aerosol Science and Technology, 1990, 13(2): 230-240. [37] Yue D L, Hu M, Wu Z J, et al. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D2): 1159-1171. [38] Yue D L, Hu M, Zhang R Y, et al. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing [J]. Atmospheric Chemistry and Physics, 2010, 10(10): 4953-4960. [39] Zhang R Y, Suh I, Zhao J. et al. Atmospheric new particle formation enhanced by organic acids [J]. Science, 2004, 304(5676): 1487-1490. [40] Zhang R Y, Wang L, Khalizov A F, et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution [J]. Proceedings of the National Academy of Science of the United States of America, 2009, 106(42): 17650-17654. [41] Hoffmann T, Bandur R, Marggraf U, et al. Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: Implications for new particle formation processes [J]. Journal of Geophysical Research, 1998, 103(D19): 25569-25578. [42] Zhao J, Khalizov A, Zhang R, et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors [J]. The Journal of Physical Chemistry A, 2009, 113(4): 680-689. [43] Nadykto A B, Yu F Q, Strong hydrogen bonding between atmospheric nucleation precursors and common organics [J]. Chemical Physics Letters, 2007, 435(1): 14-18. [44] McGraw R, Wu D T. Kinetic extensions of the nucleation theorem [J]. The Journal of Chemical Physics, 2003, 118(20): 9337-9347. [45] McGraw R, Zhang R Y. Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system [J]. The Journal of Chemical Physics, 2008, 128(6): 064508. [46] Wang L, Khalizov A F, Zheng J, et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics [J]. Nature Geoscience, 2010, 3(4): 238-242. [47] Nadykto A B, Yu F, Strong hydrogen bonding between atmospheric nucleation precursors and common organics [J]. Chemical Physics Letters, 2007, 435(1): 14-18. [48] Nadykto A B, Du H, Yu F, Quantum DFT and DF-DFT study of vibrational spectra of sulfuric acid, sulfuric acid monohydrate, formic acid and its cyclic dimer [J]. Vibrational Spectroscopy, 2007, 44(2): 286-296. [49] Xu Y, Nadykto A B, Yu F, et al, Formation and properties of hydrogen-bonded complexes of common organic oxalic acid with atmospheric nucleation precursors [J]. Journal of Molecular Structure: THEOCHEM, 2010, 951(1): 28-33. [50] Xu Y, Nadykto A B, Yu F, et al. Interaction between common organic acids and trace nucleation species in the Earth’s Atmosphere [J]. The Journal of Physical Chemistry A, 2010, 114(1): 387-396. [51] Fan J W, Zhang R Y, Collins D, et al. Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas [J]. Geophysical Research Letters, 2006, 33(15): L15802. [52] Kurtén T, Sundberg M R, Vehkamaki H, et al. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate [J]. Journal of Physical Chemistry A, 2006, 110(22): 7178-7188. [53] Xu W, Zhang R Y. Theoretical investigation of interaction of dicarboxylic acids with common aerosol nucleation precursors [J]. The Journal of Physical Chemistry A, 2012, 116(18): 4539-4550. [54] Xu W, Zhang R Y. A theoretical study of hydrated molecular clusters of amines and dicarboxylic acids [J]. The Journal of Chemical Physics, 2013, 139(6): 53-58. [55] Zhu Y P, Liu Y R, Huang T, et al. Theoretical Study of the Hydration of Atmospheric Nucleation Precursors with Acetic Acid [J]. The Journal of Physical Chemistry A, 2014, 118(36): 7959–7974. |
[1] | XIANG Wang, WANG Weigang, ∗, ZHANG Wenyu, GE Maofa, ∗, LI Kun. Research progress of optical properties of secondary organic aerosols [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 16-28. |
[2] | TIAN Yu, PAN Xiaole∗, YAO Weijie, LIU Hang, ZHANG Yuting, LEI Shandong, SUN Yele, LI Jie, XIN Jinyuan, CAO Junji, WANG Zifa, . Research progress on atmospheric aerosol morphology and mixing state properties based on particle optical detection technology [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 65-91. |
[3] | ZHOU Jiacheng, XU Xuezhe, FANG Bo, ZHANG Yang, ZHAO Weixiong∗, ZHANG Weijun, . Research progress of methods of aerosol optical hygroscopic properties measurement [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 92-103. |
[4] | ZHU Xin, CHEN Qingcai∗, WANG Qingwen, Li Jinwen, CHENG Jingwen, LANG Hanrui, WANG Maoying. Absorbance of brown carbon in atmospheric particulate matter in Xi′an [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 125-134. |
[5] | ZHANG Xindan, LI Lei∗, CHEN Cheng, GUI Ke, ZHENG Yu, LIANG Yuanxin, YAO Wenrui, CHE Huizheng. Evaluation of accuracy of aerosol optical and radiative products retrieved by aerosol component method [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 160-170. |
[6] | ZHOU Bianhong, ∗, CAO Xia, FENG Qiao, WANG Jin, ZHANG Rongduan, LIU Yawen, YANG Zhenlong, LIU Wenxia, WANG Yong, LI Jianjun. Variation Characteristics and Potential Source Apportionment of Black Carbon Aerosol During Primary Pollution Process in Baoji [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 331-338. |
[7] | . Cloud Detection of Remote Sensing Images Based on H-SVM with Multi-Feature Fusion [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(1): 58-66. |
[8] | LIANG Baoling, XU Hanbing∗, ZHAO Jun, ∗. Performance Comparison Between a Custom-Made Soft X-Ray Neutralizer and a Commercial Counterpart #br# [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 438-447. |
[9] | YANG Dongsen, CAI Runlong, JIANG Jingkun, MA Yan, ZHENG Jun∗. Performance Intercomparison of Diethylene Glycol-Based Aerosol Size Spectrometers in Sub-3 nm Particle Size Range #br# [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 470-485. |
[10] | LIU Zhuang, SHI Chenlie, ZHANG Meng, GAO Zhiyuan, ZHU Xinming, WANG Xuhong, . Temporal Characteristics of Aerosol Optical Depth Based on Cluster Analysis Method [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(6): 411-418. |
[11] | XU Qiang, PAN Feng, BAI Jin-Qiang, HUANG Li, WANG Xing-Tao, HAN Yi-Ping, WU Zhen-Sen. Calculation of light scattering of aerosol particle cluster by the discrete-dipole approximation method [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 370-377. |
[12] | YANG Hui, DIAO Xue-Song, SUN Yan-Fei, WANG Tie-Dong, ZONG Jun-Jun, QING Feng. Bioaerosols Polarization Measurement by Short-Range Multi-Wavelength Lidar [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(1): 52-58. |
[13] | WEN Zuo-Ying, GU Xue-Jun, RONG Hua, ZHU Yu-Feng, TANG Xiao-Feng, GAI Yan-Bo, HU Chang-Jin, ZHAO Wei-Xiong, ZHANG Wei-Jun. Study of the Process of Aerosol Particle Formation by Ion-Induced Nucleation [J]. Journal of Atmospheric and Environmental Optics, 2016, 11(2): 81-90. |
[14] | HUANG Wei, XIE Yi-Song, LI Zheng-Qiang, ZHANG Ying, LI Dong-Hui, LI Kai-Tao, LI Li, XU Hua. Remote Sensing Estimation of Aerosol Composition During APEC Forum in Beijing 2014 [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(4): 278-285. |
[15] | FENG Qian, ZOU Bin, ZHAO Wai. Theoretical Simulation of Scattering and Radiative Properties of Nonspherical Dust Aerosols at Visible Wavelength [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(1): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||