Journal of Atmospheric and Environmental Optics
XU Dandan1,2, MA Jinji1,2,*, WEI Yinan1,2, GONG Mingyan1,2, LI Zhengqiang3
Online:
2018-11-28
Published:
2018-11-14
CLC Number:
[1] Intergovernmental Panel on Climate Change. Climate Change 2013: Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis [R]. 2013. [2] Stubenrauch C J, Cros S, Guignard A, et al. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat [J]. Atmospheric Chemistry And Physics, 2010, 10: 7197-7214. [3] Urankar G, Prabha T V, Pithurai G, et al. Aerosol and cloud feedbacks on surface energy balance over selected regions of the indian subcontinent [J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D4): 183-204. [4] Probst P, Rizzi R, Tosi E, et al. Total cloud cover from satellite observations and climate models [J]. Atmospheric Research, 2012, 107: 161-170. [5] Ma J, Wu H, Wang C, et al. Multiyear satellite and surface observations of cloud fraction over China [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7655-7666. [6] Sodergren H, Mcdonald A, Bodeker G. An energy balance model exploration of the impacts of interactions between surface albedo, water vapour and clouds on polar amplification [C]. EGU General Assembly Conference Abstract, 2017, 19: 11025. [7] Yoshida R, Okamoto H, Hagihara Y, et al. Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using at- tenuated backscattering and depolarization ratio [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D4): D00H32. [8] Dolinar E K, Dong X, Xi B. Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations [J]. Climate Dynamics, 2016, 46(7-8): 2123-2144. [9] Cesana G, Chepfer H. Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP [J]. Journal of Geophysical Research: Atmospheres, 2013, 118(14): 7922-7937. [10] Thompson D R, Mccubbin I, Gao B C, et al. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy [J]. Journal of Geophysical Research: Atmospheres. 2016, 121(15): 9174-9190. [11] Riedi J, Marchant B, Platnick S, et al. Cloud thermodynamic phase inferred from merged POLDER and MODIS data [J]. Atmospheric Chemistry And Physics, 2010, 10(23): 11851-11865. [12] Twohy C H, Schanot A J, Cooper W A. Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor [J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(1): 197-202. [13] Lin D. Temporal and spatial distribution and change trend of cloud water of different types clouds in southwest China [J]. Journal of Arid Meteorology, 2015, 33(5): 748-755. [14] Lei L, Sun X J, Gao T C. Research on cloud phase detemination using infrared emissivity spectrum data (1): cloud phase determination [J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3885-3894. [15] Lei L, Sun X J, Gao T C. Research on cloud phase detemination using infrared emissivity spectrum data (2): retrieval of cloud effective radius and water path [J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3895-3906. [16] Zeng Zhaoliang, Guo Jianping, Ma Daxi, et al. Spatio-temporal variation of aerosol optical depth from CALIPSO and MODIS data and their intercomparison [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(3): 210-220(in Chinese). 曾昭亮, 郭建平, 马大喜,等. 基于CALIOP和MODIS数据的气溶胶时空分布特征对比分析[J]. 大气与环境光学学报, 2017, 12(3): 210-220. [17] Platnick S, Meyer K G, King M D, et al. The MODIS cloud optical and microphysical products: collection 6 updates and examples from Terra and Aqua [J]. IEEE Transactions on Geoscience \& Remote Sensing, 2016, 55(1): 502-525. [18] Marchant B, Platnick S, Meyer, K, et al. MODIS collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP [J]. Atmospheric Measurement Techniques. 2016, 8(11): 11893-11924. [19] Stephens G L, Vane D G, Boain R J, et al. The CloudSatmission and the A-Train: A new dimension of space-based observations of clouds and precipitation [J]. Bulletin of the American Meteorological Society, 2002, 83(12): 1771-1790. [20] Winker D M, Pelon J, McCormick M P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds [C]. Proceedings of SPIE, 2003, 4893: 1-12. [21] Qiu Y, Wang J, Yang K. Statistical comparison of cloud and aerosol vertical properties between two eastern China regions based on CloudSat/CALIPSO data [J]. Advances in Meteorology, 2017 (2017-3-2): 1-12. [22] Hagihara Y, Okamoto H, Luo Z J. Joint analysis of cloud top heights from CloudSat and calipso: new insights into cloud top microphysics [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7): 4087-4106. [23] Garnier A, Faivre M, Dubuisson P, et al. Retrieval of cloud and aerosol properties from combined IIR, lidar and WFC observations of CALIPSO [J]. International Coordination Group on Laser Atmospheric Studies, 2012: 697-700. [24] Chan M A, Comiso J C. Arctic cloud characteristics as derived from MODIS, CALIPSO, and CloudSat [J]. Journal of Climate, 2013, 26(10): 3285-3306. [25] Kahn B H, Irion F W, Dang V T, et al. The atmospheric infrared sounder version 6 cloud products [J]. Atmospheric Chemistry and Physics, 2013, 13: 14477-14543. [26] Sassen K, Wang Z, Liu D. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D4): D00H06. [27] Yan W, RenJ Q, Lu W, et al. Cloud phase discrimination technology based on spaceborne millimeter wave radar and lidar data [J]. Journal of Infrared And Millimeter Waves, 2011, 30(1): 68-73. [28] Minnis P, Kratz D P, Coakley Jr J A, et al. Cloud optical property retrieval (subsystem 4.3) [J]. Clouds Earth's Radiant Energy System Algorithm Theoretical basis Documen, 1995, 3: 135-176. [29] Kahn B H, Chahine M T, Stephens G L, et al. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount [J]. Atmospheric Chemistry And Physics Discuss, 2008, 8(5): 1231-1248. [30] Delanoe J, HoganR J. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D7): D07204. [31] McGill M J, Li L, Hart W D, et al. Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE [J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D7): D07203. [32] Hu Y, Winker D, Vaughan M, et al. CALIPSO/ CALIOP cloud phase discrimination algorithm [J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(11): 2293-2309. [33] Delano\"e J, Hogan R J. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D4): D00H29. [34] Bedka K M, Dworak R, Brunner J, et al. Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat cloud profiling radar observations [J]. Journal of Applied Meteorology And Climatology, 2012, 51(10): 1811-1822. [35] Sun-Mack S, Minnis P, Chen Y, et al. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data [C]. Proceedings of the SPIE, 2007, 6745: 674513. [36] Liang Xiaofang, Ma Jinji. Cloud phase discrimination algorithm based on CALIPSO data [J]. Journal of Atmospheric and Environmental Optics, 2012, 7(3): 203-207(in Chinese). 梁晓芳, 麻金继. 基于CALIPSO数据反演云相态的方法研究[J]. 大气与环境光学学报, 2012, 7(3): 203-207. |
[1] | SHI Yiqiang, CHEN Jiongfeng, WANG Jian, HUANG Baoyan, WU Jun, . Spatial and Temporal Characteristics and Correlation of MODIS Aerosol Optical Depth and PM2.5 Concentration Over Xiamen City [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 334-346. |
[2] | LIU Zhuang, SHI Chenlie, ZHANG Meng, GAO Zhiyuan, ZHU Xinming, WANG Xuhong, . Temporal Characteristics of Aerosol Optical Depth Based on Cluster Analysis Method [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(6): 411-418. |
[3] | LU En-Ming, XIAO Dong-Sheng, LIU Fu-Zhen. Filling MODIS AOD China Land Missing Data Regions Based on Reflectance Statistical Model [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 378-387. |
[4] | WEI Han-Yan, CUI Sheng-Cheng, YANG Shi-Zhi, ZHAO Qiang. Sea Surface Temperature Retrieving Using MODIS Data [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(4): 277-284. |
[5] | ZHAO Shi-Wei, GAO Xiao-Qing. Study of Aerosol Optical Depth and Angström Exponent in the Northwest of China Based on MODIS Product [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(5): 321-331. |
[6] | ZENG Zhao-Liang, GUO Jian-Beng, MA Da-Xi, LIU Hong-Li, WU Wen-Zheng, GUI Ke, LOU Meng-Jun. Spatio-Temporal Variation of Aerosol Optical Depth from CALIOP and MODIS Data and Their Intercomparison [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(3): 210-220. |
[7] | ZHANG Yan-Ting, CHEN Bin, ZHANG Ting-Han, ZHANG Zhi-Juan, ZHANG Guo-Long, GUAN Xiao-Dan, ZHANG Bei-Dou. Analysis of the Spatiotemporal Variations of Aerosols During APEC Using MODIS and MISR Data [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(2): 136-147. |
[8] | ZHANG Yu-Huan, MAO Hui-Qin, WANG Zhong-Ting, GUO Wei, LI Qing, LI Zheng-Qiang, CHEN Xing-Feng, CHEN Hui. Cross Calibration Between GOCI and MODIS Based on Spectral and Geometry Matching [J]. Journal of Atmospheric and Environmental Optics, 2016, 11(6): 412-422. |
[9] | ZENG Zhao-Liang, GUO Jian-Ping, MA Da-Xi. Research of Aerosol Three-Dimensional Distribution Based on Multi-Satellite Data over Jiangxi [J]. Journal of Atmospheric and Environmental Optics, 2016, 11(5): 391-400. |
[10] | LI Yi-Xiu, WU Jun, FANG Yong-Hua. Cross-Calibration of FY-3A/VIRR Thermal Infrared Channel with TERRA/MODIS [J]. Journal of Atmospheric and Environmental Optics, 2016, 11(3): 204-210. |
[11] | QI Hai, CHEN Wen-Zhong. Correlation Between Aerosol Layer Optical Depth from CALIPSO Satellite Lidar and Air Pollution Index in Qingdao [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(6): 463-471. |
[12] | GAO Ling, LI Jun, CHEN Lin, ZHANG Li-Yang. Retrieval Atmospheric Aerosol Optical Depth over China from AVHRR by Multiple Regression Method [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(4): 286-294. |
[13] | JING Rui-Huan, MA Jin-Ji, WANG Chao. Methods of PM2.5 Inversion Based on Multi-Source Data [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(1): 51-62. |
[14] | YANG Yuan-Jian, FU Yun-Fei, WU Bi-Wen, SHI Chun-E, DENG Xue-Liang, ZHANG Hao, ZHANG Ying. Impacts of Agricultural Fire on Aerosol Distribution over East China During Summer Harvest Time [J]. Journal of Atmospheric and Environmental Optics, 2013, 8(4): 241-252. |
[15] | WANG Jia-Cheng, CHEN Shu-Guang. Retrieval of Aerosol Optical Depth over Turbid Water Using MODIS Land Channels in the Near Infrared Spectral Region [J]. Journal of Atmospheric and Environmental Optics, 2013, 8(2): 130-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||