1 Crespo A, Hern'{andez J, Frandsen S. Survey of modelling methods for wind turbine
wakes and wind farms [J]. Wind Energy, 2015, 2(1): 1-24.
2 Vermeer L J, So rensen J N, Crespo A. Wind turbine wake aerodynamics [J].
Progress in Aerospace Sciences, 2003, 39(6): 467-510.
3 Port'{e-Agel F, Wu Y T, Lu H, et al. Large-eddy simulation of atmospheric
boundary layer flow through wind turbines and wind farms [J]. Journal of Wind
Engineering & Industrial Aerodynamics, 2011, 99(4): 154-168.
4 Churchfield M J, Lee S, Michalakes J, et al. A numerical study of the effects of
atmospheric and wake turbulence on wind turbine dynamics [J]. Journal of Turbulence, 2012, 13(14): 1-32.
5 Abkar M , Port'{e-Agel, Fernando. Influence of atmospheric stability on wind-turbine wakes:
A large-eddy simulation study [J]. Physics of Fluids, 2015, 27(3):035104.
6 Elliott D L, Barnard J C. Observations of wind turbine wakes and surface roughness
effects on wind flow variability [J]. Solar Energy, 1990, 45(5): 265-283.
7 Jacobs E W, Kelley N D, Mckenna H E, et al. Wake Characteristics of the MOD2 Wind
Turbine at Medicine Bow, Wyoming [C]. Fourth ASME Wind Energy Symposium, 1985.
8 H"{ogstrom U, Asimakopoulos D N, Kambezidis H, et al. 1987: A field study of
the wake behind a 2 MW wind turbine [J]. Atmospheric Environment(1967), 1988, 22(4): 803-820.
9 Barthelmie R J, Folkerts L, Ormel F T, et al. Offshore wind turbine wakes measured by
sodar [J]. Journal of Atmospheric and Oceanic Technology, 2002, 20(4): 466.
10 Rhodes M E, Lundquist J K. The effect of wind-turbine wakes on summertime US midwest
atmospheric wind profiles as observed with ground-based Doppler lidar [J].
Boundary-Layer Meteorology, 2013, 149(1): 85-103.
11 Magnusson M, Smedman A S. A practical method to estimate wind turbine wake characteristics
from turbine data and routine wind measurements [J]. Wind Engineering, 1996, 20(2): 73-92.
12 Hall F F, Huffaker R M, Hardesty R M, et al. Wind measurement accuracy of the NOAA
pulsed infrared Doppler lidar [J]. Applied Optics, 1984, 23: 2503-2506.
13 Banakh V A, Bodaruev V V, Smalikho I N. Estimation of the turbulence energy dissipation
rate from the pulsed Doppler lidar data [J]. Atmospheric and Oceanic Optics, 1997, 10: 957-965.
14 Rahm S, Smalikho I. Aircraft wake vortex measurement with airborne coherent Doppler lidar [J].
Journal of Aircraft, 2008, 45(4): 1148-1155.
15 Pichugina Y L, Banta R M. Stable boundary layer depth from high-resolution measurements of
the mean wind profile [J]. Journal of Applied Meteorology and Climatology, 2010, 49(1): 20-35.
16 O'Connor E J, Illingworth A J, Brooks I M, et al. A method for estimating the turbulent
kinetic energy dissipation rate from a vertically pointing Doppler lidar, and
independent evaluation from balloon-borne in situ measurements [J]. Journal of
Atmospheric and Oceanic Technology, 2010, 27(10): 1652-1664.
17 Bing"{ol F, Mann J, Larsen G C. Light detection and ranging measurements of wake
dynamics part I: one dimensional scanning [J]. Wind Energy, 2010, 13(1): 51-61.
18 Trujillo J J, Bing"{ol F, Larsen G C, et al. Light detection and ranging measurements
of wake dynamics. Part II: two-dimensional scanning [J]. Wind Energy, 2011, 14(1): 61-75.
19 Sonnenschein C M, Horrigan F A. Signal-to-noise relationships for coaxial systems that heterodyne
backscatter from the atmosphere [J]. Applied Optics, 1971, 10(7): 1600-1604.
20 K"{asler Y, Rahm S, Simmet R, et al. Wake measurements of a multi-mw wind turbine
with coherent long-range pulsed Doppler wind lidar [J]. Journal of Atmospheric and
Oceanic Technology, 2010, 27(9): 1529-1532. |