[1]
Wang Hailing. Study on the Method of SO_2 Concentration
Measurement Based on the DOAS and
Support Vector Regression [D]. Chongqing: Master's Thesis
of Chongqing University of China, 2015 (in Chinese).
王海玲. 基于DOAS和支持向量回归的SO_2浓度检测方法研究 [D]. 重庆
: 重庆大学硕士论文, 2015.
[2]
Yu Changyi. The formation, harm and prevention of acid
rain [J]. Environmental Protection and
Circular Economy, 2017, 37(09): 42-44+47 (in Chinese).
于长毅. 酸雨的形成、危害及防治 [J]. 环境保护与循环经济, 2017,
37(09): 42-44+47.
[3]
Chen Mingyan, Jiang Xianzheng, Huang Ruhong. Forming,
distribution, damage and preventive measures
of acid rain [J]. Guangdong Trace Elements Science, 2009,
16(01): 15-20 (in Chinese).
陈明艳,姜显政,黄汝红. 浅析酸雨的形成、危害及防治措施 [J].广东微
量元素科学, 2009, 16(01): 15-20.
[4]
Wang Hongtao. Key Technologies of Industrial Gas
Monitoring Based on Absorption Spectroscopy [D].
Chongqing: Master's Thesis of Chongqing University of
China, 2014 (in Chinese).
王洪涛. 基于吸收光谱技术的工业气体监测关键技术研究 [D]. 重庆:
重庆大学硕士论文, 2014.
[5]
Han Xuebing, Zeng Yi, Zhao Minjie, et al. Calibration
method and storage format of data from space-borne
trace gas different optical absorption spectrometer [J].
Journal of Atmospheric and Environmental Optics, 2018,
13(04): 268-276 (in Chinese).
韩雪冰,曾议,赵敏杰,等. 星载大气痕量气体差分吸收光谱仪数据的定标
处理与存储方式 [J].大气与环境光学学报, 2018, 13(04): 268-276.
[6]
Gao Yue, Su Chong, Li Hongguang. A kind of deep belief
networks based on nonlinear features extraction with
application to PM2.5 concentration prediction and
diagnosis [J]. Acta Automatica Sinica, 2018, 44(02): 318
-329 (in Chinese).
高月,宿翀,李宏光. 一类基于非线性PCA和深度置信网络的混合分类器
及其在PM2.5浓度预测和影响因素诊断中的应用[J].
自动化学报, 2018, 44(02): 318-329.
[7]
Zhao Mingfu, Tang Ping, Tang Bin, et al. Application of
principal component analysis combined fisher
discrimination in water quality detection by UV-Vis
spectroscopy [J]. Journal of Atmospheric
and Environmental Optics, 2018, 13(06): 436-446 (in
Chinese).
赵明富,唐平,汤斌,等. 主成分分析联合Fisher判别在紫外-可见光谱法
水质检测中的应用 [J].大气与环境光学学报, 2018, 13(06): 436-
446.
[8]
Huang Hong, Shi Guangyao, Jin Yingying, et al. Random
Subspace Deep Regression and its Application in
Water Quality Analysis of TOC in UV Spectroscopy [J].
Application Research of Computers, 2017, 34(10): 3020-3023
(in Chinese).
黄鸿,石光耀,金莹莹,等. 随机子空间深度回归方法在紫外光谱水质分析
中的应用 [J].计算机应用研究, 2017, 34(10): 3020-3023.
[9]
Pan Junhong, Wang Yihuai, Wu Wei. Physical quantity
regression method based on optimized BP neural [J].
Computer Science, 2018, 45(12): 170-176 (in Chinese).
潘俊虹,王宜怀,吴薇. 基于优化BP神经网络的物理量回归方法 [J]. 计
算机科学, 2018, 45(12): 170-176.
[10]
Qin Guohua, Xie Wenbin, Wang Huamin. Detection and control
for tool wear based on neural network and genetic
algorithm [J]. Optics and Precision Engineering, 2015,
23(5): 1314-1321 (in Chinese).
秦国华,谢文斌,王华敏. 基于神经网络与遗传算法的刀具磨损检测与控制
[J]. 光学精密工程, 2015, 23(5): 1314-1321.
[11]
Shen Haoyang, Wei Anlei, Wang Xiaowen, et al. Research on
application of BP artificial neural network
in the prediction of the concentration of SO_2 in ambient
air [J]. Environmental Engineering, 2014, 32(06): 117-121
(in Chinese).
申浩洋,韦安磊,王小文,等. BP人工神经网络在环境空气SO_2质量浓度预
测中的应用 [J]. 环境工程, 2014, 32(06): 117-121.
[12]
Bai Peng, Li Yan, Zhang Bin, et al. Key technologies
research of mixture gas infrared spectrum
analysis based on SVM [J]. Acta Photonica Sinica, 2008,
37(3): 566-572 (in Chinese).
白鹏,李彦,张斌,等. 基于SVM的混合气体红外光谱分析关键技术研究
[J]. 光子学报, 2008, 37(3): 566-572.
[13]
Zhang Luda, Jin Zechen, Shen Xiaonan, etal. Applied study
on support vector machine (SVM) regression method in
quantitative analysis with near-infrared spectroscopy [J].
Spectroscopy and Spectral Analysis, 2006, 25(9): 1400-
1403 (in Chinese).
张录达,金泽宸,沈晓南,等. SVM回归法在近红外光谱定量分析中的应用
研究 [J]. 光谱学与光谱分析, 2006, 25(9): 1400-1403.
[14]
Liang Zhengtang. Theoretical Studies on Wind Power System
Forecasting and Decision-making Based on
Characteristic Mining of Uncertainty [D]. Jinan: Doctorial
Dissertation of Shandong University of China, 2017 (in
Chinese).
梁正堂. 基于不确定性特征挖掘的风电系统预测与决策理论研究 [D].
济南:山东大学博士论文, 2017.
[15]
Zhang Ning, Liu Tianjian. Kernel function ELM method for
short-term load forecasting considering influencing
factors [J]. Engineering Journal of Wuhan University,
2018, 51(08): 703-707+714.
张宁,刘天键. 考虑影响因素的短期负荷预测核函数ELM方法 [J]. 武汉
大学学报(工学版), 2018, 51(08): 703-707+714.
[16]
Xu Tingting, Ma Chenye, Zhang Jingmin, et al.
Classification of LAMOST spectra based on deep learning
[J].
Acta Astronomica Sinica, 2019, 60(02): 15-24.
许婷婷,马晨晔,张静敏,等. 基于深度学习的LAMOST光谱分类研究 [J].
天文学报, 2019, 60(02): 15-24.
[17]
Bian X H, Zhang C X, Tan X Y, et al. A boosting extreme
learning machine for near-infrared spectral
quantitative analysis of diesel fuel and edible blend oil
samples [J]. Analytical Methods, 2017, 9(20): 2983-2989.
|