Journal of Atmospheric and Environmental Optics ›› 2021, Vol. 16 ›› Issue (1): 2-17.
Previous Articles Next Articles
WANG Caiyu1,2,3, YUAN Kee1,3,4∗, SHI Dongfeng1,3, HUANG Jian1,3, YANG Wei1,3, ZHA Linbin1,3, ZHU Wenyue1,3
Online:
2021-01-28
Published:
2021-02-02
CLC Number:
[1] | Zhou Xiuji. Advanced Atmospheric Physics [M]. Beijing: China Meteorological Press, 1991: 138. |
周秀骥. 高等大气物理学 [M]. 北京: 气象出版社, 1991: 138. | |
[2] | Andrews L C, Phillips R L. A new theory of optical scintillation for moderate-to-strong fluctuations [C]. Proceedings of SPIEThe International Society for Optical Engineering, 1999, 3609: 90-100. |
[3] | Cui L Y, Xue B D, Zhou F G. Analytical expressions for the angle of arrival fluctuations for optical waves propagation through |
moderate-to-strong non-Kolmogorov refractive turbulence [J]. Journal of the Optical Society of America A, 2013, 30(11): | |
2188. | |
[4] | Zhou P, Ma Y X, Wang X L, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence [J]. Optics |
Letters, 2010, 35(7): 1043. | |
[5] | Huang Y P, Zeng A P, Gao Z H, et al. Beam wander of partially coherent array beams through non-Kolmogorov turbulence [J]. |
Optics Letters, 2015, 40(8): 1619. | |
[6] | Rao R Z. Science and technology of atmospheric effects on optical engineering: Progress in 3rd quinquennium of 21st century |
[J] | Science China Technological Sciences, 2017, 60(12): 1771-1783. |
[7] | Cui J Q, Ma B K, Guo L X. Research on scintillation index of Laser beam propagation through atmospheric turbulence for |
double slant path [C]. 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), IEEE, 2012: | |
49 | 3-496. |
[8] | Hudcova L, Barcik P. Experimental measurement of beam wander in the turbulent atmospheric transmission media [C]. Proceedings of 22nd International Conference, Radioelektronika 2012, IEEE, 2012: 191-194. |
[9] | Churnside J H. Optical communications through a dispersive medium: a performance bound for photocounting [J]. Applied |
Optics, 1981, 20(4): 573-578. | |
[10] | Churnside J H, Mcintyre C M. Signal current probability distribution for optical heterodyne receivers in the turbulent atmosphere. 1: Theory [J]. Applied Optics, 1978, 17(14): 2141-2147. |
[11] | Churnside J H, Mcintyre C M. Averaged threshold receiver for direct detection of optical communications through the lognormal atmospheric channel [J]. Applied Optics, 1977, 16(10): 2669-2676. |
[12] | Prokes A, Brancik L. Degradation of free space optical communication performance caused by atmospheric turbulence [C]. |
20 | 12 2nd International Conference on Advances in Computational Tools for Engineering Applications, 2012: 338-341. |
[13] | Moore C I, Burris H R, Stell M F, et al. Atmospheric turbulence studies of a 16 km maritime path [C]. Proceedings of SPIE-The |
International Society for Optical Engineering, 2005, 5793: 78-88. | |
[14] | Mudge K A, Silva K K M B D, Clare B A, et al. Scintillation index of the free space optical channel: Phase screen modelling |
and experimental results [C]. 2011 International Conference on Space Optical Systems and Applications, IEEE, 2011: 403-409. | |
[15] | Arockia Bazil Raj A, Arputha Vijaya Selvi J. Comparison of different models for ground-level atmospheric attenuation prediction with new models according to local weather data for FSO applications [J]. Journal of Optical Communications, 2015, |
36 | (2): 181-186. |
[16] | Kiasaleh K. Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence [J]. IEEE |
Transactions on Communications, 2006, 54(4): 604-607. | |
[17] | Wu Xiaojun, Wang Hongxing, Li Bifeng, et al. Affect analysis of atmospheric turbulence on fading characteristics in free-space |
optical system over different environments [J]. Chinese Journal of Lasers, 2015, 42(5): 0513001. | |
吴晓军, 王红星, 李笔锋, 等. 不同传输环境下大气湍流对无线光通信衰落特性分析 [J]. 中国激光, 2015, 42(5): 0513001. | |
[18] | Han Liqiang, You Yahui. Performance of multiple input multiple output free space optical communication under atmospheric |
turbulence and atmospheric attenuation [J]. Chinese Journal of Laser, 2016, 43(7): 0706004. | |
韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能 [J]. 中国激光, 2016, 43(7): 0706004. | |
[19] | Osborn J. Profiling the Turbulent Atmosphere and Novel Correction Techniques for Imaging and Photometry in Astronomy |
[D] | Durham: Durham University, 2010. |
[20] | Nilsson T, Haas R. Impact of atmospheric turbulence on geodetic very long baseline interferometry [J]. Journal of Geophysical |
Research: Solid Earth, 2010, 115(3): 1-11. | |
[21] | Aristidi E, Vernin J, Fossat E, et al. Monitoring the optical turbulence in the surface layer at Dome C, Antarctica, with sonic |
anemometers [J]. Monthly Notices of the Royal Astronomical Society, 2015, 454(4): 4304-4315. | |
[22] | Bufton J L, Minott P O, Fitzmaurice M W, et al. Measurements of turbulence profiles in the troposphere [J]. Journal of the |
Optical Society of America, 1972, 62(9): 1068-1070. | |
[23] | Majumdar A K, Eaton F D, Jensen M L, et al. Atmospheric turbulence measurements over desert site using ground-based |
instruments, kite/tethered-blimp platform, and aircraft relevant to optical communications and imaging systems: Preliminary | |
results [C]. Free-Space Laser Communications VI, 2006, 6304: 63040X. | |
[24] | Balsley B B. Turbulence observations over a desert basin using a kite/tethered-blimp platform [J]. Optical Engineering, 2000, |
39 | (9): 2517. |
[25] | Marks R D, Vernin J, Azouit M, et al. Antarctic site testing-microthermal measurements of surface-layer seeing at the South |
Pole [J]. Astronomy and Astrophysics Supplement Series, 1996, 118(2): 385-390. | |
[26] | Wu S, Hu X D, Han Y J, et al. Measurement and analysis of atmospheric optical turbulence in Lhasa based on thermosonde |
[J] | Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 201: 05241. |
[27] | Moulsley J T, Asimakopoulos D N, Cole R S, et al. Measureent of boundary layer structure parameter profiles by acoustic |
sounding and comparison with direct measurements [J]. Quarterly Journal of the Royal Meteorological Society, 1981, 107: | |
20 | 3-230. |
[28] | Forbes F F, Barker E S, Peterman K R, et al. High altitude acoustic soundings [C]. Proceedings of SPIE-The International |
Society for Optical Engineering. 1986, 551: 60-73. | |
[29] | Qiang X W, Liu T H, Feng S L, et al. Remote sensing of atmospheric turbulence profiles by laser guide stars [C]. Optical |
Measurement Systems for Industrial Inspection X, 2017, 10329: 103292H. | |
[30] | Eaton F D. Recent developments of optical turbulence measurement techniques (Invited Paper) [C]. Atmospheric Propagation |
II, 2005, 5793: 68-77. | |
[31] | Azouit M, Vernin J. Optical turbulence profiling with balloons relevant to astronomy and atmospheric physics [J]. Publications |
of the Astronomical Society of the Pacific, 2005, 117(831): 536-543. | |
[32] | Manning R M, Vyhnalek B. A microwave radiometric method to obtain the average path profile of atmospheric temperature |
and humidity structure parameters and its application to optical propagation system assessment [C]. Free-Space Laser Communication and Atmospheric Propagation XXVII, 2015, 9354: 935406. | |
[33] | Vyhnalek B E. Path profiles of Cn2 derived from radiometer temperature measurements and geometrical ray tracing [C]. FreeSpace Laser Communication and Atmospheric Propagation XXIX, 2017, 10096: 100961G. |
[34] | Vernin J, Roddier F. Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. |
Evidence for a multilayer structure of the air turbulence in the upper troposphere [J]. Journal Optical Society of America, 1973, | |
63 | (3): 270-273. |
[35] | Avila R, Vernin J, Sanchez L J. Atmospheric turbulence and wind profiles monitoring with generalized scidar [J]. ´ Astronomy |
and Astrophysics, 2001, 369(1): 364-372. | |
[36] | Tokovinin A, Vernin J, Ziad A, et al. Optical turbulence profiles at Mauna Kea measured by MASS and SCIDAR [J]. Publications of the Astronomical Society of the Pacific, 2005, 117(830): 395-400. |
[37] | Tokovinin A. Turbulence profiles from the scintillation of stars, planets, and moon [J]. Revista Mexicana de Astronomia y |
Astrofisica: Serie de Conferencias, 2007, 31: 61-70. | |
[38] | Fuchs A, Tallon M, Vernin J. Focusing on a turbulent layer: principle of the “generalized SCIDAR” [J]. Publications of the |
Astronomical Society of the Pacific, 1998, 110(743): 86-91. | |
[39] | Shepherd H W, Osborn J, Wilson R W, et al. Stereo-SCIDAR: Optical turbulence profiling with high sensitivity using a |
modified SCIDAR instrument [J]. Monthly Notices of the Royal Astronomical Society, 2014, 437(4): 3568-3577. | |
[40] | Osborn J, Wilson R W, Sarazin M, et al. Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT [J]. Monthly |
Notices of the Royal Astronomical Society, 2018, 478(1): 825-834. | |
[41] | Wilson R W. Slodar: Measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor [J]. Monthly Notices of |
the Royal Astronomical Society, 2002, 337(1): 103-108. | |
[42] | Butterley T, Wilson R W, Sarazin M. Determination of the profile of atmospheric optical turbulence strength from SLODAR |
data [J]. Monthly Notices of the Royal Astronomical Society, 2006, 369(2): 835-845. | |
[43] | Osborn J, Wilson R, Butterley T, et al. Profiling the surface layer of optical turbulence with SLODAR [J]. Monthly Notices of |
the Royal Astronomical Society, 2010, 406(2): 1405-1408. | |
[44] | Lombardi G, Sarazin M, Char F, et al. Surface layer turbulence profiling with the SL-SLODAR and LuSci at ESO Paranal |
observatory [C]. Third AO4ELT Conference-Adaptive Optics for Extremely Large Telescopes, 2013, 2: 2-8. | |
[45] | Kornilov V, Tokovinin A A, Vozyakova O, et al. MASS: A monitor of the vertical turbulence distribution [C]. Proceedings of |
SPIE-The International Society for Optical Engineering, 2003, 4839 (2): 837-845. | |
[46] | Els S G, Schock M, Seguel J, ¨ et al. Study on the precision of the MASS turbulence profiler employed in the site testing |
campaign for the thirty meter telescope [J]. Applied Optics, 2008, 47(14): 2610-2618. | |
[47] | Hickson P, Lanzetta K. Measuring atmospheric turbulence with a lunar scintillometer array [J]. Publications of the Astronomical |
Society of the Pacific, 2004, 116(826): 1143-1152. | |
[48] | Tokovinin A, Bustos E, Berdja A. Near-ground turbulence profiles from lunar scintillometer [J]. Monthly Notices of the Royal |
Astronomical Society, 2010, 404(3): 1186-1196. | |
[49] | Thomas-osip J E, Prieto G, Berdja A, et al. Characterizing optical turbulence at the GMT site with MooSci and MASS-DIMM |
[J] | Publications of the Astronomical Society of the Pacific, 2012, 124(911): 84-93. |
[50] | Eaton F D, Peterson W A, Hines J R, et al. Comparison of two techniques for determining atmospheric seeing [C]. Proceedings |
of SPIE-The International Society for Optical Engineering, 1988, 926: 319-334. | |
[51] | Belen′kii M S, Roberts D W, Stewart J M, et al. Experimental validation of the differential image motion lidar concept [J]. |
Optics Letters, 2000, 25(8): 518. | |
[52] | Gatland I, Stewart J M, Gimmestad G G. Inversion techniques for the differential image motion lidar [C]. Proceedings of |
SPIE-The International Society for Optical Engineering, 2009, 7324: 73240C. | |
[53] | Tokovinin A. From differential image motion to seeing [J]. Publications of the Astronomical Society of the Pacific, 2002, |
11 | 4(800): 1156-1166. |
[54] | Gimmestad G G, Roberts D W, Stewart J M, et al. Testing of LIDAR system for turbulence profiles [C]. Proceedings of |
SPIE-The International Society for Optical Engineering, 2008, 6951: 695109. | |
[55] | Zhou Yingjie, Zhou Anran, Sun Dongsong, et al. Development of differential image motion LIDAR for profiling optical |
turbulence [J]. Infrared and Laser Engineering, 2016, 45(11):1-5. | |
周颖捷, 周安然, 孙东松, 等. 差分像移大气湍流廓线激光雷达的研制 [J]. 红外与激光工程, 2016, 45(11): 1-5. | |
[56] | Guo Jie, Sun Dongsong, Qiang Xiwen, et al. Error analysis of differential image motion lidar [J]. Acta Optica Sinica, 2014, |
34 | (8): 1130001. |
郭 洁, 孙东松, 强希文, 等. 差分像移湍流廓线激光雷达测量误差分析 [J]. 光学学报, 2014, 34(8): 1130001. | |
[57] | Jing X, Hou Z, Wu Y, et al. Development of a differential column image motion light detection and ranging for measuring |
turbulence profiles [J]. Optics Letters, 2013, 38(17): 3445. | |
[58] | Cheng Zhi. Detection Methods of Atmospheric Turbulence Profile Based on Differential Light Column Lidar [D]. Heifei: |
University of Science and Technology of China, 2017. | |
程 知. 基于差分光柱激光雷达的大气湍流强度廓线探测方法研究 [D]. 合肥: 中国科学技术大学, 2017. | |
[59] | Belen′kii M S, Bruns D, Hughes K A, et al. Cross-Path LIDAR for turbulence profile determination [C]. Advanced Maui |
Optical Space Surveillance Technologies Conference, 2007: 1-10. | |
[60] | Beleri′kii M S. Effect of residual turbulent scintillation and a remote-sensing technique for simultaneous determination of |
turbulence and scattering parameters of the atmosphere [J]. Journal of the Optical Society of America A, 1994, 11(3): 1150. | |
[61] | Belen′kii M S, Gimmestad G G. Design considerations for residual turbulent scintillation (RTS) lidar [C]. Proceedings of |
SPIE-The International Society for Optical Engineering, 1994, 2222: 628-632. | |
[62] | Cui Chaolong, Huang Honghua, Mei Haiping, et al. Residual turbulent scintillation lidar for detecting atmospheric turbulence |
[J] | High Power Laser and Particle Beam, 2013, 25(5): 1091-1096. |
崔朝龙, 黄宏华, 梅海平, 等. 探测大气湍流的光强闪烁激光雷达 [J]. 强激光与粒子束, 2013, 25(5): 1091-1096. | |
[63] | Zhao Qi. Atmospheric Turbulence Measurment with Scintillation Lidar [D]. Heifei: University of Science and Technology of |
China, 2018. | |
赵 琦. 利用闪烁激光雷达探测大气湍流的方法研究 [D]. 合肥: 中国科学技术大学, 2018. | |
[64] | Cui Chaolong, Huang Honghua, Mei Haiping, et al. Measurement of turbulence information using Mie scattering lidar [J]. |
Journal of Atmospheric and Environmental Optics, 2011, 6(2): 89-94. | |
崔朝龙, 黄宏华, 梅海平, 等. 利用米散射激光雷达获取湍流信息的方法研究 [J]. 大气与环境光学学报, 2011, 6(2): | |
89 | -94. |
[1] | GENG Dan , ZHAO Zengliang , FAN Zhiqiang , WU Zuowei , LI Dongyang , ZHANG Xiangxing. Estimation of refractive index structure constant profile at high altitude in Gobi area based on meteorological rocket sounding data [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(2): 99-107. |
[2] | CHEN Xiaomin , ZHANG Hongwei , SUN Kangwen , WU Songhua , . Inversion methods of slant turbulence parameters based on coherent Doppler lidar [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 1-13. |
[3] | WANG Xijin , XU Qingshan , FAN Chuanyu , CHENG Chen , QI Peng , XU Chidong . Lidar detection of diurnal variation of whole atmosphere aerosol optical depth [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 14-24. |
[4] | LI Lin , , ZHANG Zhiguo , DU Chuanyao , WEI Tao , YU Liping , FAN Xuebo ∗. Inter-comparison of wind measurements between Doppler wind lidar and L-band radiosonde [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(5): 494-505. |
[5] | CUI Tong, CHEN Xiangcheng, DAI Guangyao, ZHANG Hongwei, WANG Qichao, WU Songhua, ∗. Design and experiment of varifocal CW-wind lidar with high resolution [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 393-408. |
[6] | CAI Zhenfeng, LI Ding∗, HUANG Haihong. Analysis of impact of dust transport on aerosol evolution in Xuzhou region in spring 2021 [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 409-419. |
[7] | GUO Hang, SHAO Hui∗, CHEN Jie, HE Zixin, CAO Zheng, WANG Huimin, YAN Pu. Spectral characteristics analysis of dust retention leaves based on hyperspectral Lidar [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 420-428. |
[8] | FENG Pan∗, ZHANG Zhanye, DING Hongbo, . Design and fabrication of control circuit for lidar PMT detection module [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 465-475. |
[9] | CHEN Biao, WU Dong, ∗. Arctic sea fog detection using CALIOP and MODIS [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 267-278. |
[10] | LIU Jiaxin, YUN Long, SHAO Shiyong, CHENG Xueling, SONG Xiaoquan, ∗. Observation of Turbulence Using Doppler Wind Lidar in Shenzhen [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 383-391. |
[11] | WANG Lina, YANG Lili, ∗, YANG Yanping, WANG Jing, TAO Huijie, BI Jianrong. Comprehensive Analysis of a Sandstorm in Northwest China Based on Multiple Data [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 392-403. |
[12] | YIN Zhenping, YI Fan, ∗, WANG Wei, HE Yun, LIU Fuchao, ZHANG Yunpeng, YU Changming, . Investigation of Entrainment of Transported Dust into Local Planetary Boundary Layer with Polarization Lidar [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 299-306. |
[13] | ZHA Shuping, LI Xinyu, ZHANG Dong, WANG Wenjing∗, DONG Yan, HU Xiufang. Analysis of Typical Air Pollution Event in Wuhu During Spring Festival in 2020 [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(2): 127-137. |
[14] | . Aerosol Optical Properties in Beijing Based on AERONET [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(1): 18-27. |
[15] | . Offshore Wind Turbine Wake Characteristics Analysis Using Single-Double Gaussian Model Based on Wind Lidar Measurements [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(1): 44-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||