Journal of Atmospheric and Environmental Optics ›› 2022, Vol. 17 ›› Issue (1): 92-103.
Previous Articles Next Articles
ZHOU Jiacheng1;2, XU Xuezhe1, FANG Bo1, ZHANG Yang1, ZHAO Weixiong1∗, ZHANG Weijun1;3
Received:
2021-09-27
Revised:
2021-10-29
Online:
2022-01-28
Published:
2022-01-28
CLC Number:
ZHOU Jiacheng, XU Xuezhe, FANG Bo, ZHANG Yang, ZHAO Weixiong∗, ZHANG Weijun, . Research progress of methods of aerosol optical hygroscopic properties measurement[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 92-103.
[1] | Tang X Y, Zhang Y H, Shao M. Atmospheric Environmental Chemistry (Second Edition) [M]. Beijing: Higher Education |
Press, 2006. | |
唐孝炎, 张远航, 邵 敏. 大气环境化学 (第二版) [M]. 北京: 高等教育出版社, 2006. | |
[2] | Nel A. Air pollution-related illness: Effects of particles [J]. Science, 2005, 308(5723): 804-806. |
[3] | Stocker T F, Qin D, Plattner G K, et al. IPCC. In Climate Change 2013-The Physical Science Basis, Contribution of Working |
Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge | |
University Press, 2013. | |
[4] | Covert D S, Charlson R J, Ahlquist N C. A study of the relationship of chemical composition and humidity to light scattering |
by aerosols [J]. Journal of Applied Meteorology, 1972, 11(6): 968-976. | |
[5] | Tang I N, Munkelwitz H R. Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of |
atmospheric importance [J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D9): 18801-18808. | |
[6] | Zhang R, Khalizov A F, Pagels J, et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during |
atmospheric processing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(30): | |
10 | 291-10296. |
[7] | Khalizov A F, Xue H, Wang L, et al. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with |
sulfuric acid [J]. The Journal of Physical Chemistry A, 2009, 113(6): 1066-1074. | |
[8] | Xue H X, Khalizov A F, Wang L, et al. Effects of dicarboxylic acid coating on the optical properties of soot [J]. Physical |
Chemistry Chemical Physics, 2009, 11(36): 7869-7875. | |
[9] | Liu X G, Zhang Y H, Cheng Y F, et al. Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing |
in Guangzhou during the 2006 PRIDE-PRD campaign [J]. Atmospheric Environment, 2012, 60: 59-67. | |
[10] | Cheng Y F, Wiedensohler A, Eichler H, et al. Relative humidity dependence of aerosol optical properties and direct radiative |
forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study [J]. | |
Atmospheric Environment, 2008, 42(25): 6373-6397. | |
[11] | Garland R M, Ravishankara A R, Lovejoy E R, et al. Parameterization for the relative humidity dependence of light extinction: |
Organic-ammonium sulfate aerosol [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D19): D19303. | |
[12] | Zieger P, Fierz-Schmidhauser R, Weingartner E, et al. Effects of relative humidity on aerosol light scattering: Results from |
different European sites [J]. Atmospheric Chemistry and Physics, 2013, 13(21): 10609-10631. | |
[13] | Lack D A, Quinn P K, Massoli P, et al. Relative humidity dependence of light absorption by mineral dust after long-range |
atmospheric transport from the Sahara [J]. Geophysical Research Letters, 2009, 36(24): L24805. | |
[14] | Zhou J C, Xu X Z, Zhao W X, et al. Simultaneous measurements of the relative-humidity-dependent aerosol light extinction, |
scattering, absorption, and single-scattering albedo with a humidified cavity-enhanced albedometer [J]. Atmospheric Measurement Techniques, 2020, 13(5): 2623-2634. | |
[15] | Zhang L, Sun J Y, Shen X J, et al. Observations of relative humidity effects on aerosol light scattering in the Yangtze River |
Delta of China [J]. Atmospheric Chemistry and Physics, 2015, 15(14): 8439-8454. | |
[16] | Tang M J, Cziczo D J, Grassian V H. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud |
condensation, and ice nucleation [J]. Chemical Reviews, 2016, 116(7): 4205-4259. | |
[17] | Tang M J, Chan C K, Li Y J, et al. A review of experimental techniques for aerosol hygroscopicity studies [J]. Atmospheric |
Chemistry and Physics, 2019, 19(19): 12631-12686. | |
[18] | Zhao C S, Yu Y L, Kuang Y, et al. Recent progress of aerosol light-scattering enhancement factor studies in China [J]. Advances |
in Atmospheric Sciences, 2019, 36(9): 1015-1026. | |
[19] | Gu W J, Li Y J, Zhu J X, et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using |
a commercial vapor sorption analyzer [J]. Atmospheric Measurement Techniques, 2017, 10(10): 3821-3832. | |
[20] | Zheng X H, Hu C J, Pan G, et al. Hygroscopicity of SOA formed by ozonolysis of styrene [J]. Journal of Atmospheric and |
Environmental Optics, 2012, 7(4): 254-262. | |
郑晓宏, 胡长进, 潘 刚, 等. 苯乙烯-臭氧反应产生的二次有机气溶胶的吸湿性研究 [J]. 大气与环境光学学报, 2012, 7(4): | |
25 | 4-262. |
[21] | Qian X D, Zhang Q L, Xu X Z, et al. Development of a volatility hygroscopic tandem differential mobility analyzer (VHTDMA) for the measurement of aerosol thermal and hygroscopic properties [J]. China Environmental Science, 2017, 37(4): |
12 | 69-1275. |
钱小东, 张启磊, 徐学哲, 等. 气溶胶吸湿和挥发特性测量的 VH-TDMA 装置研究 [J]. 中国环境科学, 2017, 37(4): | |
69-1275. | |
[22] | Zhang L. Observation and Model Study of Relative Humidity Effects on Aerosol Light Scattering at a Regional Backgound |
Site in the Yangtze Delta Region [D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
张 璐. 长三角背景区域相对湿度对大气气溶胶散射特征影响的观测与模拟研究 [D]. 北京: 中国科学院大学, 2017. | |
[23] | Liu H J, Zhao C S. Design of a humidified nephelometer system with high time resolution [J]. Acta Scientiarum Naturalium |
Universitatis Pekinensis, 2016, 52(6): 999-1004. | |
刘宏剑, 赵春生. 高时间分辨率加湿浊度计系统设计研究 [J]. 北京大学学报 (自然科学版), 2016, 52(6): 999-1004. | |
[24] | Chen J, Zhao C S, Ma N, et al. Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain [J]. Atmospheric Chemistry and Physics, 2014, 14(15): 8105-8118. |
[25] | Fierz-Schmidhauser R, Zieger P, Wehrle G, et al. Measurement of relative humidity dependent light scattering of aerosols [J]. |
Atmospheric Measurement Techniques, 2010, 3(1): 39-50. | |
[26] | Brem B T, Mena Gonzalez F C, Meyers S R, et al. Laboratory-measured optical properties of inorganic and organic aerosols |
at relative humidities up to 95% [J]. Aerosol Science and Technology, 2012, 46(2): 178-190. | |
[27] | Baynard T, Garland R M, Ravishankara A R, et al. Key factors influencing the relative humidity dependence of aerosol light |
scattering [J]. Geophysical Research Letters, 2006, 33(6): L06813. | |
[28] | Massoli P, Bates T S, Quinn P K, et al. Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their |
impact on aerosol direct radiative forcing [J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D00F07. | |
[29] | Langridge J M, Richardson M S, Lack D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: Wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown |
spectroscopy [J]. Aerosol Science and Technology, 2011, 45(11): 1305-1318. | |
[30] | Michel Flores J, Bar-Or R Z, Bluvshtein N, et al. Absorbing aerosols at high relative humidity: Linking hygroscopic growth to |
optical properties [J]. Atmospheric Chemistry and Physics, 2012, 12(12): 5511-5521. | |
[31] | Zhao W, Xu X, Fang B, et al. Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and |
its application to measurement of aerosol optical hygroscopicity [J]. Applied Optics, 2017, 56(11): E16-E22. | |
[32] | Carrico C M, Rood M J, Ogren J A, et al. Aerosol optical properties at Sagres, Portugal during ACE-2 [J]. Tellus B, 2000, |
52 | (2): 694-715. |
[33] | Yan P, Pan X L, Tang J, et al. Hygroscopic growth of aerosol scattering coefficient: A comparative analysis between urban and |
suburban sites at winter in Beijing [J]. Particuology, 2009, 7(1): 52-60. | |
[34] | Sun J Y, Zhang L, Shen X J, et al. A review of the effects of relative humidity on aerosol scattering properties [J]. Acta |
Meteorologica Sinica, 2016, 74(5): 672-682. | |
孙俊英, 张 璐, 沈小静, 等. 大气气溶胶散射吸湿增长特性研究进展 [J]. 气象学报, 2016, 74(5): 672-682. | |
[35] | Titos G, Cazorla A, Zieger P, et al. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of |
measurements, techniques and error sources [J]. Atmospheric Environment, 2016, 141: 494-507. | |
[36] | Pan X L, Yan P, Tang J, et al. Observational study of influence of aerosol hygroscopic growth on scattering coefficient over |
rural area near Beijing mega-city [J]. Atmospheric Chemistry and Physics, 2009, 9(19): 7519-7530. | |
[37] | Tao J C, Zhao C S, Kuang Y, et al. A new method for calculating number concentrations of cloud condensation nuclei based |
on measurements of a three-wavelength humidified nephelometer system [J]. Atmospheric Measurement Techniques, 2018, | |
11 | (2): 895-906. |
[38] | Kuang Y, Zhao C S, Tao J C, et al. A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system [J]. Atmospheric Chemistry and Physics, 2017, 17(11): 6651-6662. |
[39] | Zhao G, Zhao C S, Kuang Y, et al. Calculating the aerosol asymmetry factor based on measurements from the humidified |
nephelometer system [J]. Atmospheric Chemistry and Physics, 2018, 18(12): 9049-9060. | |
[40] | Kuang Y, Zhao C S, Zhao G, et al. A novel method for calculating ambient aerosol liquid water content based on measurements |
of a humidified nephelometer system [J]. Atmospheric Measurement Techniques, 2018, 11(5): 2967-2982. | |
[41] | Kuang Y, Tao J C, Xu W Y, et al. Calculating ambient aerosol surface area concentrations using aerosol light scattering |
enhancement measurements [J]. Atmospheric Environment, 2019, 216: 116919. | |
[42] | Arnott W P, Moosmuller H, Sheridan P J, ¨ et al. Photoacoustic and filter-based ambient aerosol light absorption measurements: |
Instrument comparisons and the role of relative humidity [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D1): | |
4034. | |
[43] | Langridge J M, Richardson M S, Lack D A, et al. Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity [J]. Aerosol Science and Technology, 2013, 47(11): 1163-1173. |
[44] | Radney J G, Zangmeister C D. Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using |
supercontinuum photoacoustic spectroscopy [J]. Analytical Chemistry, 2015, 87(14): 7356-7363. | |
[45] | Thompson J E, Barta N, Policarpio D, et al. A fixed frequency aerosol albedometer [J]. Optics Express, 2008, 16(3): 2191- |
2205. | |
[46] | Zhao W, Xu X, Dong M, et al. Development of a cavity-enhanced aerosol albedometer [J]. Atmospheric Measurement Techniques, 2014, 7(8): 2551-2566. |
[47] | Xu X Z, Zhao W X, Fang B, et al. Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical |
properties and single-scattering albedo of aerosols [J]. Optics Express, 2018, 26(25): 33484-33500. | |
[48] | Onasch T B, Massoli P, Kebabian P L, et al. Single scattering albedo monitor for airborne particulates [J]. Aerosol Science and |
Technology, 2015, 49(4): 267-279. | |
[49] | Wei Y, Ma L, Cao T, et al. Light scattering and extinction measurements combined with laser-induced incandescence for the |
real-time determination of soot mass absorption cross section [J]. Analytical Chemistry, 2013, 85(19): 9181-9188. | |
[50] | Carrico C M, Capek T J, Gorkowski K J, et al. Humidified single-scattering albedometer (H-CAPS-PMSSA): Design, data |
analysis, and validation [J]. Aerosol Science and Technology, 2021, 55(7): 749-768. | |
[51] | Markowicz K M, Flatau P J, Quinn P K, et al. Influence of relative humidity on aerosol radiative forcing: An ACE-Asia |
experiment perspective [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D23): 8662. |
[1] | XIANG Wang, WANG Weigang, ∗, ZHANG Wenyu, GE Maofa, ∗, LI Kun. Research progress of optical properties of secondary organic aerosols [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 16-28. |
[2] | TIAN Yu, PAN Xiaole∗, YAO Weijie, LIU Hang, ZHANG Yuting, LEI Shandong, SUN Yele, LI Jie, XIN Jinyuan, CAO Junji, WANG Zifa, . Research progress on atmospheric aerosol morphology and mixing state properties based on particle optical detection technology [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 65-91. |
[3] | ZHU Xin, CHEN Qingcai∗, WANG Qingwen, Li Jinwen, CHENG Jingwen, LANG Hanrui, WANG Maoying. Absorbance of brown carbon in atmospheric particulate matter in Xi′an [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 125-134. |
[4] | ZHANG Xindan, LI Lei∗, CHEN Cheng, GUI Ke, ZHENG Yu, LIANG Yuanxin, YAO Wenrui, CHE Huizheng. Evaluation of accuracy of aerosol optical and radiative products retrieved by aerosol component method [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 160-170. |
[5] | LIANG Baoling, XU Hanbing∗, ZHAO Jun, ∗. Performance Comparison Between a Custom-Made Soft X-Ray Neutralizer and a Commercial Counterpart #br# [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 438-447. |
[6] | . Progress of Measurement Technology for Marine Water Optics Properties [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 23-39. |
[7] | ZHANG Yang, WEN Hui, LIN Xiao-Xiao, CHEN Jiao. Study of Atmospheric Aerosol Nucleation Mechanism by Organic Acid [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 355-363. |
[8] | MOU Fu-Sheng, LI Su-Wen, LI Ang, XIE Pin-Hua, WANG Yang, XU Jin, CHEN Hao, WU Feng-Cheng. Aerosol Optical Properties in Beijing Based on Observation by Sun-Photometer [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(2): 88-96. |
[9] | YANG Hui, DIAO Xue-Song, SUN Yan-Fei, WANG Tie-Dong, ZONG Jun-Jun, QING Feng. Bioaerosols Polarization Measurement by Short-Range Multi-Wavelength Lidar [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(1): 52-58. |
[10] | HUANG Wei, XIE Yi-Song, LI Zheng-Qiang, ZHANG Ying, LI Dong-Hui, LI Kai-Tao, LI Li, XU Hua. Remote Sensing Estimation of Aerosol Composition During APEC Forum in Beijing 2014 [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(4): 278-285. |
[11] | FENG Qian, ZOU Bin, ZHAO Wai. Theoretical Simulation of Scattering and Radiative Properties of Nonspherical Dust Aerosols at Visible Wavelength [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(1): 1-10. |
[12] | ZHANG Xiao-Meng, MA Jin-Ji. Lidar Observation of Wuhu Aerosol Optical Characteristics Using Mie Scattering [J]. Journal of Atmospheric and Environmental Optics, 2014, 9(5): 340-347. |
[13] | ZHENG Xiao-Hong, HU Chang-Jin, Pan Gang, CHENG Yue, LIU Zhi, ZHAO Wei-Xiong, GU Xue-Jun, ZHANG Wei-Jun. Hygroscopicity of SOA Formed by Ozonolysis of Styrene [J]. Journal of Atmospheric and Environmental Optics, 2012, (4): 254-. |
[14] | LIU Xi-Chuan, GAO Tai-Chang, LIU Zhi-Tian. Effect of Atmospheric Aerosols on Laser Transmission Attenuation [J]. Journal of Atmospheric and Environmental Optics, 2012, (3): 181-190. |
[15] | WEI Xiu-Li, GAO Min-Guang, LIU Jian-Guo, WANG Bei, XU Liang, TONG Jing-Jing, LI Sheng, CHENG Si-Yang. Investigation of Inorganic Ions in Ambient Aerosols by FTIR in Hefei [J]. Journal of Atmospheric and Environmental Optics, 2012, (3): 198-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||