Journal of Atmospheric and Environmental Optics ›› 2023, Vol. 18 ›› Issue (5): 401-419.
WANG Yuting, JIANG Guisheng, LI Lingli, ZHANG Qilei, WANG Ya, LIU Qinghai, JI Juanjuan, ZHA Shenlong, ZHANG Yu, ZHANG Hui, MA Hongliang *
Received:
2022-01-30
Revised:
2022-03-15
Online:
2023-09-28
Published:
2023-10-11
Contact:
Hong-Liang MA
E-mail:hlgnma@foxmail.com
CLC Number:
WANG Yuting, JIANG Guisheng, LI Lingli, ZHANG Qilei, WANG Ya, LIU Qinghai, JI Juanjuan, ZHA Shenlong, ZHANG Yu, ZHANG Hui, MA Hongliang . Development review of optical gas absorption cell[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 401-419.
[1] | Tang X Y, Zhang Y H, Shao M. Atmospheric Environmental Chemistry [M]. Beijing: Higher Education Press, 1990. |
唐孝炎, 张远航, 邵 敏. 大气环境化学 [M]. 北京: 高等教育出版社, 1990. | |
[2] | Tuzson B, Mangold M, Looser H, et al. Compact multipass optical cell for laser spectroscopy [J]. Optics letters, 2013, 38(3): |
25 | 7-259. |
[3] | Graf M, Emmenegger L, Tuzson B. Compact, circular, and optically stable multipass cell for mobile laser absorption |
spectroscopy [J]. Optics Letters, 2018, 43(11): 2434-2437. | |
[4] | Tang Y Y, Liu W Q, Kan R F, et al. Measurements of NO and CO in Shanghai urban atmosphere by using quantum cascade |
lasers [J]. Optics Express, 2011, 19(21): 20224-20232. | |
[5] | Mangold M, Tuzson B, Hundt M, et al. Circular paraboloid reflection cell for laser spectroscopic trace gas analysis [J]. |
Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2016, 33(5): 913-919. | |
[6] | Dong F Z, Kan R F, Liu W Q, et al. Tunable diode laser absorption spectroscopic technology and its applications in air quality |
monitoring [J]. Chinese Journal of Quantum Electronics, 2005, 22(3): 315-325. | |
董凤忠, 阚瑞峰, 刘文清, 等. 可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用 [J]. 量子电子学报, 2005, 22 | |
(3) | : 315-325. |
[7] | Stefani S, Piccioni G, Snels M, et al. Experimental CO2 absorption coefficients at high pressure and high temperature [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117: 21-28. | |
[8] | Tarsitano C G, Webster C R. Multilaser Herriott cell for planetary tunable laser spectrometers [J]. Applied Optics, 2007, 46(28): |
69 | 23-6935. |
[9] | Webster C R, Mahaffy P R. Determing the local abundance of Martian methane and its' 13C/12C and D/H isotopic ratios for |
comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission [J]. Planetary and Space | |
Science, 2011, 59(2-3): 271-283. | |
[10] | White J U. Long optical paths of large aperture [J]. Journal of the Optical Society of America, 1942, 32(5): 285-288. |
[11] | Chernin S M, Barskaya E G. Optical multipass matrix systems [J]. Applied Optics, 1991, 30(1): 51-58. |
[12] | Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers [J]. Applied Optics, 1964, 3(4): 523- |
526. | |
[13] | Chernin S M. New generation of multipass systems in high resolution spectroscopy [J]. Spectrochimica Acta Part A: Molecular |
and Biomolecular Spectroscopy, 1996, 52(8): 1009-1022. | |
[14] | Doussin J F, Dominique R, Patrick C. Multiple-pass cell for very-long-path infrared spectrometry [J]. Applied Optics, 1999, 38 |
(19) | : 4145-4150. |
[15] | Ahonen T, Alanko S, Horneman V M, et al. A long path cell for the Fourier spectrometer bruker IFS 120 HR: Application to |
the weak v1 + v2 and 3v2 bands of carbon disulfide [J]. Journal of Molecular Spectroscopy, 1997, 181(2): 279-286. | |
[16] | Song Z Q, Ni J S, Shang Y, et al. Study of long-optical-path White cell gas sensor with fiber coupling structure [J]. Journal of |
Optoelectronics Laser, 2012, 23(6): 1082-1085. | |
宋志强, 倪家升, 尚 盈, 等. 光纤耦合结构长光程怀特池气体传感器 [J]. 光电子·激光, 2012, 23(6): 1082-1085. | |
[17] | Glowacki D R, Goddard A, Seakins P W. Design and performance of a throughput-matched, zero-geometric-loss, modified |
three objective multipass matrix system for FTIR spectrometry [J]. Applied Optics, 2007, 46(32): 7872-7883. | |
[18] | Kwabia Tchana F, Willaert F, Landsheere X, et al. A new, low temperature long-pass cell for mid-infrared to terahertz |
spectroscopy and synchrotron radiation use [J]. Review of Scientific Instruments, 2013, 84(9): 093101. | |
[19] | Yang X B, Zhao W X, Tao L, et al. Measurement of volatile organic compounds in the smog chamber using a Chernin |
multipass cell [J]. Acta Physica Sinica, 2010, 59(7): 5154-5162. | |
杨西斌, 赵卫雄, 陶 玲, 等. 一种新型光学多通池系统应用于烟雾箱内挥发性有机化合物探测 [J]. 物理学报, 2010, 59(7): | |
51 | 54-5162. |
[20] | Cheng Y, Zhao W X, Hu C J, et al. Experimental study of the photochemical reaction in the smog chamber using a chernin |
multipass cell [J]. Acta Optica Sinica, 2013, 33(8): 295-302. | |
程 跃, 赵卫雄, 胡长进, 等. Chernin型多通池用于烟雾箱光化学反应过程的实验研究 [J]. 光学学报, 2013, 33(8): 295-302. | |
[21] | Fang B, Zhao W X, Yang N N, et al. Development and application of optical multi-pass cells [J]. Chinese Journal of Quantum |
Electronics, 2021, 38(5): 617-632. | |
方 波, 赵卫雄, 杨娜娜, 等. 光学多通池的研制及应用 [J]. 量子电子学报, 2021, 38(5): 617-632. | |
[22] | Herriott D R, Schulte H J. Folded optical delay lines [J]. Applied Optics, 1965, 4(8): 883-889. |
[23] | McManus J B, Kebabian P L, Zahniser M S. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy |
[J] | Applied Optics, 1995, 34(18): 3336-3348. |
[24] | Hao L Y, Qiang S, Wu G R, et al. Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy [J]. |
Review of Scientific Instruments, 2002, 73(5): 2079-2085. | |
[25] | Robert C. Simple, stable, and compact multiple-reflection optical cell for very long optical paths [J]. Applied Optics, 2007, 46 |
(22) | : 5408-5418. |
[26] | So S, Thomazy D. Multipass cell using spherical mirrors while achieving dense spot patterns: US20120242989 [P]. 2012-09- |
27. | |
[27] | Liu K, Wang L, Tan T, et al. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a |
compact dense-pattern multipass cell [J]. Sensors and Actuators B: Chemical, 2015, 220: 1000-1005. | |
[28] | Cui R Y, Dong L, Wu H P, et al. Calculation model of dense spot pattern multi-pass cells based on a spherical mirror |
aberration [J]. Optics Letters, 2019, 44(5): 1108-1111. | |
[29] | Ozharar S, Sennaroglu A. Mirrors with designed spherical aberration for multi-pass cavities [J]. Optics Letters, 2017, 42(10): |
19 | 35-1938. |
[30] | Dong M, Zheng C T, Yao D, et al. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSRHC) |
[J] | Optics Express, 2018, 26(9): 12081-12091. |
[31] | Manninen A, Tuzson B, Looser H, et al. Versatile multipass cell for laser spectroscopic trace gas analysis [J]. Applied Physics |
B, 2012, 109(3): 461-466. | |
[32] | Bernacki B E. Multipass optical device and process for gas and analyte determination: US7876443 [P]. 2011-01-25. |
[33] | Wu F L, Li C L, Shi W X, et al. Study on the spiral-torus herriott type cell [J]. Spectroscopy and Spectral Analysis, 2016, 36 |
(4) | : 1051-1055. |
吴飞龙, 李传亮, 史维新, 等. 一种螺旋型的紧凑多光程池 [J]. 光谱学与光谱分析, 2016, 36(4): 1051-1055. | |
[34] | Chang H, Feng S L, Qiu X B, et al. Implementation of the toroidal absorption cell with multi-layer patterns by a single ring |
surface [J]. Optics Letters, 2020, 45(21): 5897-5900. | |
[35] | Yang Z, Guo Y, Ming X S, et al. Generalized optical design of the double-row circular multi-pass cell [J]. Sensors (Basel, |
Switzerland), 2018, 18(8): 2680. | |
[36] | Smith L G. An infra-red absorption cell for gases at high and low temperatures [J]. Review of Scientific Instruments, 1942, 13 |
(2) | : 65-67. |
[37] | Robinson A M, Sutton N. Infrared absorption at 10.6 μm in CO2 at elevated temperatures [J]. Applied Optics, 1977, 16(10): |
26 | 32-2633. |
[38] | Robinson A M, Haswell P, Billing M. High-temperature, high-pressure 10-μm absorption cell [J]. Review of Scientific |
Instruments, 1983, 54(1): 117-118. | |
[39] | Hartmann J M, Perrin M Y. Measurements of pure CO2 absorption beyond the υ3 bandhead at high temperature [J]. Applied |
Optics, 1989, 28(13): 2550-2553. | |
[40] | Phillips W J, Welch J H, Brashear B J. A high-temperature infrared absorption gas sample cell [J]. Review of Scientific |
Instruments, 1992, 63(4): 2174-2176. | |
[41] | Rieker G B, Liu X, Li H, et al. Measurements of near-IR water vapor absorption at high pressure and temperature [J]. Applied |
Physics B, 2007, 87(1): 169-178. | |
[42] | Almodovar C A, Su W W, Strand C L, et al. High-pressure, high-temperature optical cell for mid-infrared spectroscopy [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 231(4): 69-78. | |
[43] | Gorbaty Y E, Bondarenko G V. High-pressure, high-temperature two-chamber cell with changeable path lengths for accurate |
measurements of absorption coefficient [J]. Review of Scientific Instruments, 1993, 64(8): 2346-2349. | |
[44] | Snels M, Stefani S, Boccaccini A, et al. A simulation chamber for absorption spectroscopy in planetary atmospheres [J]. |
Atmospheric Measurement Techniques, 2021, 14(11): 7187-7197. | |
[45] | Bartlome R, Baer M, Sigrist M W. High-temperature multipass cell for infrared spectroscopy of heated gases and vapors[J]. |
Review of Scientific Instruments, 2007, 78(1): 219-483. | |
[46] | Christiansen C, Stolberg-Rohr T, Fateev A, et al. High temperature and high pressure gas cell for quantitative spectroscopic |
measurements [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 169: 96-103. | |
[47] | Ghysels M, Vasilchenko S, Mondelain D, et al. Laser absorption spectroscopy of methane at 1000 K near 1.7 μm: A validation |
test of the spectroscopic databases [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 215: 59-70. | |
[48] | Schwarm K K, Dinh H Q, Goldenstein C S, et al. High-pressure and high-temperature gas cell for absorption spectroscopy |
studies at wavelengths up to 8 μm [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 227: 145-151. | |
[49] | Melin S T, Sanders S T. Gas cell based on optical contacting for fundamental spectroscopy studies with initial reference |
absorption spectrum of H2O vapor at 1723 K and 0.0235 bar [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, | |
20 | 16, 180: 184-191. |
[50] | Cole R K, Draper A D, Schroeder P J, et al. Demonstration of a uniform, high-pressure, high-temperature gas cell with a dual |
frequency comb absorption spectrometer [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 268: 107640. | |
[51] | Stefani S, Piccioni G, Snels M, et al. Experimental CO2 absorption coefficients at high pressure and high temperature [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117: 21-28. | |
[52] | Tran H, Boulet C, Stefani S, et al. Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1. I― |
central and wing regions of the allowed vibrational bands [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, | |
20 | 11, 112(6): 925-936. |
[53] | Stefani S, Snels M, Piccioni G, et al. Temperature dependence of collisional induced absorption (CIA) bands of CO2 with |
implications for Venus' atmosphere [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 204: 242-249. | |
[54] | Sole M J, Walker P J. A windowless absorption cell for high temperature infrared applications [J]. Journal of Physics E: |
Scientific Instruments, 1970, 3(5): 394-396. | |
[55] | Grosch H, Fateev A, Nielsen K L, et al. Hot gas flow cell for optical measurements on reactive gases [J]. Journal of |
Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 392-399. | |
[56] | Fateev A, Clausen S. In situ gas temperature measurements by UV-absorption spectroscopy [J]. International Journal of |
Thermophysics, 2009, 30: 265-275 | |
[57] | Evseev V, Fateev A, Clausen S. High-resolution transmission measurements of CO2 at high temperatures for industrial |
applications [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(17): 2222-2233. | |
[58] | Willey D R, Crownover R L, Bittner D N, et al. Very low temperature spectroscopy: The pressure broadening coefficients for |
CO-He between 4.3 and 1.7 K [J]. Journal of Chemical Physics, 1988, 89(4): 1923-1928. | |
[59] | Gao W, Cao Z S, Yuan Y Q, et al. Design of a controllable low temperature cell and application [J]. Spectroscopy and Spectral |
Analysis, 2012, 32(3): 858-861. | |
高 伟, 曹振松, 袁怿谦, 等. 可连续控温低温吸收池的研制及其应用 [J]. 光谱学与光谱分析, 2012, 32(3): 858-861. | |
[60] | Smith M A H, Rinsland C P, Devi V M, et al. Temperature dependence of broadening and shifts of methane lines in the ν4 |
band [J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1992, 48(9): 1257-1272. | |
[61] | Willey D R, Choong V E, Goodelle J P, et al. Collisional cooling between 5 and 20 K: Low-temperature helium pressure |
broadening of CH3F [J]. Journal of Chemical Physics, 1992, 97(7): 4723-4726. | |
[62] | Sung K, Mantz A W, Smith M A H, et al. Cryogenic absorption cells operating inside a Bruker IFS-125HR: First results for |
13 | CH4 at 7 μm [J]. Journal of Molecular Spectroscopy, 2010, 262(2): 122-134. |
[63] | Ma H L, Sun M G, Cao Z S, et al. Cryogenic cell for low-temperature spectral experiments of atmospheric molecules [J]. |
Optics and Precision Engineering, 2014, 22(10): 2617-2621. | |
马宏亮, 孙明国, 曹振松, 等. 适用于大气分子低温光谱实验的低温吸收池 [J]. 光学精密工程, 2014, 22(10): 2617-2621. | |
[64] | Herzberg G. Spectroscopic evidence of molecular hydrogen in the atmospheres of Uranus and Neptune [J]. The Astrophysical |
Journal Letters, 1952, 115: 337-340. | |
[65] | Watanabe A, Welsh H L. Pressure-induced infrared absorption of gaseous hydrogen and deuterium at low temperatures: I. the |
integrated absorption coefficients [J]. Canadian Journal of Physics, 1965, 43(5): 818-828. | |
[66] | Blickensderfer R P, Ewing G E, Leonard R. A long path, low temperature cell [J]. Applied Optics, 1968, 7(11): 2214-2217. |
[67] | McKellar A W, Rich N, Soots V. An optical cell for long pathlengths at low temperatures [J]. Applied Optics, 1970, 9(1): 222- |
223. | |
[68] | Horn D, Pimentel G C. 2.5-km low-temperature multiple-reflection cell [J]. Applied Optics, 1971, 10(8): 1892-1898. |
[69] | Kim K C, Griggs E, Person W B. Kilometer-path low-temperature multiple-reflection cell for laser spectroscopy using tunable |
semiconductor diodes [J]. Applied Optics, 1978, 17(16): 2511-2515. | |
[70] | Briesmeister R A, Read G W, Kim K C, et al. Long path length temperature-controlled absorption cell for spectroscopic |
studies of radioactive compounds [J]. Applied Spectroscopy, 1984, 38(1): 35-38. | |
[71] | Ballard J, Strong K, Remedios J J, et al. A coolable long path absorption cell for laboratory spectroscopic studies of gases [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52(5): 677-691. | |
[72] | McKellar A R W, Watson J K G, Howard B J. The NO dimer: 15N isotopic infrared spectra, line-widths, and force field [J]. |
Molecular Physics, 1995, 86(2): 273-286. | |
[73] | Helou Z E, Erba B, Churassy S, et al. Design and performance of a low-temperature-multi-pass-cell for absorbance |
measurements of atmospheric gases. Application to ozone [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, | |
20 | 06, 101(1): 119-128. |
[74] | Mondelain D, Camy-Peyre C, Mantz A W, et al. Performance of a Herriott cell, designed for variable temperatures between |
29 | 6 and 20 K [J]. Journal of Molecular Spectroscopy, 2007, 241(1): 18-25. |
[75] | Guinet M, Mantz A W, Mondelain D. Performance of a 12.49 meter folded path copper Herriott cell designed for temperatures |
between 296 and 20 K [J]. Applied Physics B, 2010, 100(2): 279-282. | |
[76] | Mantz A W, Sung K, Brown L R, et al. A cryogenic Herriott cell vacuum-coupled to a Bruker IFS-125HR [J]. Journal of |
Molecular Spectroscopy, 2014, 304: 12-24. |
[1] | TIAN Xing , , , ZHU Lewen , , LI Long , , , HUA Zisen , , , CAO Yanan , CHENG Gang . Calibration of cavity mirror reflectivity in off-axis integrated cavity output spectroscopy based on radio frequency noise sources [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 494-502. |
[2] | ZHANG Quan , LI Xin , WEI Wei , LIU Enchao , ZHANG Yanna , HUANG Xionghao , CHEN Shengli , KANG Zhuhai , ZHENG Xiaobing . Design of BRDF measurement system based on multi-rotor UAV [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(3): 235-244. |
[3] | GUO Hang, SHAO Hui∗, CHEN Jie, HE Zixin, CAO Zheng, WANG Huimin, YAN Pu. Spectral characteristics analysis of dust retention leaves based on hyperspectral Lidar [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 420-428. |
[4] | FENG Shiling, CUI Qi, GUO Xinqian, QIU Xuanbing, GUO Guqing, HE Xiaohu, LI Chuanliang∗. Optical fringes removal in TDLAS based on wavelet denoising [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 328-335. |
[5] | LIU Qiangqiang, ZHU Hongli, GUO Guqing, WANG Zeyu, FENG Shiling, QIU Xuanbing, HE QiuSheng, LI Chuanliang∗. Simultaneous Detection of SO2 and SO3 Based on Mid-IR Quantum Cascade Laser System [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 424-431. |
[6] | GAO Dongyang, LONG Huabao, WU Shuangqing, YANG Junyan, . Target discrimination Based on Spectral Angle and Spectral Distance [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 393-400. |
[7] | . Measurement of OH Reactivity of Diesel Vehicles Exhaust Based on LIF Method [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(4): 269-284. |
[8] | . Dynamic Release Correlation Between Extracellular Organic Components and Microcystins MC-LR Based on Three-Dimensional Fluorescence Spectroscopy [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(4): 285-295. |
[9] | . Determination of Trace Elements in Three Cold Medicine Tablets by Laser-Induced Breakdown Spectroscopy [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(4): 305-313. |
[10] | . Research Progress of Laser Induced Breakdown Spectroscopy in Underwater in situ Detection [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 13-22. |
[11] | . Development of Compact Confocal Raman System for Algae Single-Cell Detection [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 55-61. |
[12] | . Rapid Measurement of Phytoplankton Community Structure by Discrete Three-Dimensional Fluorescence Spectroscopy [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 62-71. |
[13] | . Trace Cr and Cu Analysis in Aluminum Alloy by Double Pulse Laser-Induced Breakdown Spectroscopy [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(5): 345-350. |
[14] | ZHAO Minjie, SI Fuqi, ZHOU Haijin, WANG Shimei, JIANG Yu. Level 0~1 Processor of Spaceborne Environmental Trace Gases Monitoring Instrument [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(1): 66-73. |
[15] | . Extraction Method of Weak Infrared Spectra Feature of Gas [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6): 447-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||