Journal of Atmospheric and Environmental Optics ›› 2023, Vol. 18 ›› Issue (6): 541-552.doi: 10.3969/j.issn.1673-6141.2023.06.004
Previous Articles Next Articles
MAO Minjuan 1*, LIU Houtong 2*, DENG Fangping 1, DONG Yilei 1
Received:
2022-04-13
Revised:
2022-09-02
Online:
2023-11-28
Published:
2023-12-04
CLC Number:
MAO Minjuan , LIU Houtong , DENG Fangping , DONG Yilei . Lidar observation of pollutant transport and deposition in high impact haze weather[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(6): 541-552.
Add to citation manager EndNote|Ris|BibTeX
URL: http://gk.hfcas.ac.cn/EN/10.3969/j.issn.1673-6141.2023.06.004
[1] | Zhu T, Shang J, Zhao D F. The roles of heterogeneous chemical processes in the formation of an air pollution complex and |
gray haze [J]. Scientia Sinica: Chimica, 2010, 40(12): 1731-1740. | |
朱 彤, 尚 静, 赵德峰. 大气复合污染及灰霾形成中非均相化学过程的作用 [J]. 中国科学: 化学, 2010, 40(12): 1731-1740. | |
[2] | Zhang J Q, Luo D T, Wang H, et al. Characteristics and source of carbonaceous species in particulate matter during winter in |
Langfang City development zones [J]. Research of Environmental Sciences, 2019, 32(11): 1818-1825. | |
张敬巧, 罗达通, 王 涵, 等. 廊坊市开发区冬季颗粒物碳组分污染特征及来源分析 [J]. 环境科学研究, 2019, 32(11): 1818- | |
1825. | |
[3] | Liao T T, Wang S, Ai J, et al. Heavy pollution episodes, transport pathways and potential sources of PM2.5 during the winter of |
20 | 13 in Chengdu [J]. Science of the Total Environment, 2017, 584/585: 1056-1065. |
[4] | Chen H M, Zhuang B L, Liu J, et al. Regional climate responses in east Asia to the black carbon aerosol direct effects from |
India and China in summer [J]. Journal of Climate, 2020, 33(22): 9783-9800. | |
[5] | Cao K, Zhang W T, Liu S B, et al. Pareto law-based regional inequality analysis of PM2.5 air pollution and economic |
development in China [J]. Journal of Environmental Management, 2019, 252(15): 1-9. | |
[6] | Wu D, Mao J T, Deng X J, et al. Black carbon aerosols and their radiative properties in the Pearl River Delta region [J]. |
Science China (Series D), 2009, 39(11): 1542-1553. | |
吴 兑, 毛节泰, 邓雪娇, 等. 珠江三角洲黑碳气溶胶及其辐射特性的观测研究 [J]. 中国科学 (D辑), 2009, 39(11): 1542- | |
1553. | |
[7] | Mao M J, Du R G, Wu J. Influences of the G20 emission reduction on characteristics of water-soluble ions in PM in Hangzhou |
[J] | China Environmental Science, 2019, 39(6): 2283-2290. |
毛敏娟, 杜荣光, 吴 建. 杭州G20 减排措施对大气水溶性离子特征的影响 [J]. 中国环境科学, 2019, 39(6): 2283-2290. | |
[8] | Qu Y W, Wang T J, Wu H, et al. Vertical structure and interaction of ozone and fine particulate matter in spring at Nanjing, |
China: The role of aerosol's radiation feedback [J]. Atmospheric Environment, 2020, 222: 117162. | |
[9] | Liu P F, Zhao C S, Gödel T, et al. Hygroscopic properties of aerosol particles at high relative humidity and their diurnal |
variations in the North China Plain [J]. Atmospheric Chemistry and Physics, 2011, 11(7): 3479-3494. | |
[10] | Liu C, Wang T J, Rosenfeld D, et al. Anthropogenic effects on cloud condensation nuclei distribution and rain initiation in east |
Asia [J]. Geophysical Research Letters, 2020, 47(2): e2019GL086184. | |
[11] | Yamamoto G, Tanaka M. Increase of global albedo due to air pollution [J]. Journal of the Atmospheric Sciences, 1972, 29(8): |
14 | 05-1412. |
[12] | Mao M J, Liu H T, Du R G. Characteristics and control factors of ozone pollution at different time scales in Hangzhou city [J]. |
Research of Environmental Sciences, 2019, 32(11): 1844-1851. | |
毛敏娟, 刘厚通, 杜荣光. 不同时间尺度下杭州市O3污染特征及控制因素 [J]. 环境科学研究, 2019, 32(11): 1844-1851. | |
[13] | Da G A, Min X A, Xing C A, et al. Systematic classification of circulation patterns and integrated analysis of their effects on |
different ozone pollution levels in the Yangtze River Delta Region, China [J]. Atmospheric Environment, 2020, 242: 117760. | |
[14] | Han H, Liu J, Shu L, et al. Local and synoptic meteorological influences on daily variability in summertime surface ozone in |
Eastern China [J]. Atmospheric Chemistry and Physics, 2020, 20(1): 203-222. | |
[15] | Zhan C C, Xie M, Huang C W, et al. Ozone affected by a succession of four landfall typhoons in the Yangtze River Delta, |
China: Major processes and health impacts [J]. Atmospheric Chemistry and Physics, 2020, 20(22): 13781-13799. | |
[16] | Lee K H, Kim Y J, Min J K. Characteristics of aerosol observed during two severe haze events over Korea in June and October |
20 | 04 [J]. Atmospheric Environment, 2006, 40(27): 5146-5155. |
[17] | Wang S Q, Li W B, Deng X J, et al. Characteristics of air pollutant transport channels in Guangzhou region [J]. China |
Environmental Science, 2015, 35(10): 2883-2890. | |
王世强, 黎伟标, 邓雪娇, 等. 广州地区大气污染物输送通道的特征 [J]. 中国环境科学, 2015, 35(10): 2883-2890. | |
[18] | Shindell D T, Chin M, Dentener F, et al. A multi-model assessment of pollution transport to the Arctic [J]. Atmospheric |
Chemistry and Physics, 2008, 8(17): 5353-5372. | |
[19] | Bella D, Culpepper J, Khaimova J, et al. Characterization of pollution transport into Texas using OMI and TES satellite, GIS |
and in situ data, and HYSPLIT back trajectory analyses: Implications for TCEQ State Implementation Plans [J]. Air Quality, | |
Atmosphere & Health, 2016, 9(5): 569-588. | |
[20] | Zhang Z G, Gao Q X, Han X Q, et al. The study of pollutant transport between the cities in North China [J]. Research of |
Environmental Sciences, 2004, 17(1): 14-20. | |
张志刚, 高庆先, 韩雪琴, 等. 中国华北区域城市间污染物输送研究 [J]. 环境科学研究, 2004, 17(1): 14-20. | |
[21] | Wang Y, Chai F H, Liu H F, et al. Analysis on the characteristics of horizontal transport of the atmospheric pollutant over the |
Yangtze delta [J]. Research of Environmental Sciences, 2008, 21(1): 22-29. | |
王 艳, 柴发合, 刘厚凤, 等. 长江三角洲地区大气污染物水平输送场特征分析 [J]. 环境科学研究, 2008, 21(1): 22-29. | |
[22] | Comerón A, Muñoz-Porcar C, Rocadenbosch F, et al. Current research in lidar technology used for the remote sensing of |
atmospheric aerosols [J]. Sensors, 2017, 17(6): 1450. | |
[23] | Pal S, Lee T R, Phelps S, et al. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal |
variability of aerosol concentration at a valley site [J]. Science of the Total Environment, 2014, 496: 424-434. | |
[24] | Voss K J, Welton E J, Quinn P K, et al. Lidar measurements during Aerosols99 [J]. Journal of Geophysical Research: |
Atmospheres, 2001, 106(D18): 20821-20831. | |
[25] | Deng T, Wu D, Deng X J, et al. A vertical sounding of severe haze process in Guangzhou area [J]. Science China Earth |
Sciences, 2014, 57(11): 2650-2656. | |
[26] | Liu D, Zheng Z F, Chen W B, et al. Performance estimation of space-borne high-spectral-resolution lidar for cloud and aerosol |
optical properties at 532 nm [J]. Optical Express, 2019, 27(8): A481-A494. | |
[27] | Li M Y, Fan M, Tao J H, et al. The space-borne lidar cloud and aerosol classification algorithms [J]. Spectroscopy and Spectral |
Analysis, 2019, 39(2): 383-391. | |
李明阳, 范 萌, 陶金花, 等. 星载激光雷达云和气溶胶分类反演算法研究 [J]. 光谱学与光谱分析, 2019, 39(2): 383-391. | |
[28] | Ma N, Yang S P, Wang J, et al. Joint observation of a haze episode in Beijing-Tianjin-Hebei region with space borne and |
ground-based lidar [J]. Environmental Monitoring in China, 2019, 35(6): 147-156. | |
马 娜, 杨思鹏, 王 界, 等. 京津冀地区一次污染过程的星载-地基激光雷达联合观测分析 [J]. 中国环境监测, 2019, 35(6): | |
14 | 7-156. |
[29] | Fernald F G. Analysis of atmospheric lidar observations: Some comments [J]. Applied Optics, 1984, 23(5): 652-653. |
[30] | Klett J D. Stable analytical inversion solution for processing lidar returns [J]. Applied Optics, 1981, 20(2): 211-220. |
[31] | Liu H T, Mao M J. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing |
calibration [J]. Acta Physica Sinica, 2019, 68(7): 074205. | |
刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法 [J]. 物理学报, 2019, 68(7): 074205. | |
[32] | Yuan Y J, Ren D M, Hu X Y. Computing scattering phase function by recursive formula of Mie theory [J]. Chinese Journal of |
Light Scattering, 2005, 17(4): 366-371. | |
袁易君, 任德明, 胡孝勇. Mie理论递推公式计算散射相位函数 [J]. 光散射学报, 2005, 17(4): 366-371. | |
[33] | Li X B, Hu S X, Zhu W Y, et al. Characteristics of aerosol size distribution in Hefei, Yuexi, Xiamen and Beijing[J]. Journal of |
Atmospheric and Environmental Optics, 2011, 6(2): 154-162. | |
李学彬, 胡顺星, 朱文越, 等. 合肥、岳西、厦门和北京气溶胶谱分布特征分析 [J]. 大气与环境光学学报, 2011, 6(2): 154- | |
162. |
[1] | Peng ZHUANG. Application of coherent wind lidar in Guangzhou [J]. Journal of Atmospheric and Environmental Optics, 2024, 19(1): 0-0. |
[2] | LIU Yuli , WANG Yuru , XIE Chenbo . Investigation of atmospheric refractive modification based on rotational Raman lidar [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 426-433. |
[3] | CHEN Xiaomin , ZHANG Hongwei , SUN Kangwen , WU Songhua , . Inversion methods of slant turbulence parameters based on coherent Doppler lidar [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 1-13. |
[4] | WANG Xijin , XU Qingshan , FAN Chuanyu , CHENG Chen , QI Peng , XU Chidong . Lidar detection of diurnal variation of whole atmosphere aerosol optical depth [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 14-24. |
[5] | LI Lin , , ZHANG Zhiguo , DU Chuanyao , WEI Tao , YU Liping , FAN Xuebo ∗. Inter-comparison of wind measurements between Doppler wind lidar and L-band radiosonde [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(5): 494-505. |
[6] | CUI Tong, CHEN Xiangcheng, DAI Guangyao, ZHANG Hongwei, WANG Qichao, WU Songhua, ∗. Design and experiment of varifocal CW-wind lidar with high resolution [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 393-408. |
[7] | CAI Zhenfeng, LI Ding∗, HUANG Haihong. Analysis of impact of dust transport on aerosol evolution in Xuzhou region in spring 2021 [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 409-419. |
[8] | GUO Hang, SHAO Hui∗, CHEN Jie, HE Zixin, CAO Zheng, WANG Huimin, YAN Pu. Spectral characteristics analysis of dust retention leaves based on hyperspectral Lidar [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 420-428. |
[9] | FENG Pan∗, ZHANG Zhanye, DING Hongbo, . Design and fabrication of control circuit for lidar PMT detection module [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 465-475. |
[10] | LIU Kaidi, WU Haibin, CHEN Xinbing, SONG Wei∗, XU Lei. Correction of infrared radiation attenuation in water mist media based on Mie scattering theory [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 476-484. |
[11] | CHEN Biao, WU Dong, ∗. Arctic sea fog detection using CALIOP and MODIS [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 267-278. |
[12] | LIU Jiaxin, YUN Long, SHAO Shiyong, CHENG Xueling, SONG Xiaoquan, ∗. Observation of Turbulence Using Doppler Wind Lidar in Shenzhen [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 383-391. |
[13] | WANG Lina, YANG Lili, ∗, YANG Yanping, WANG Jing, TAO Huijie, BI Jianrong. Comprehensive Analysis of a Sandstorm in Northwest China Based on Multiple Data [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 392-403. |
[14] | YIN Zhenping, YI Fan, ∗, WANG Wei, HE Yun, LIU Fuchao, ZHANG Yunpeng, YU Changming, . Investigation of Entrainment of Transported Dust into Local Planetary Boundary Layer with Polarization Lidar [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 299-306. |
[15] | ZHA Shuping, LI Xinyu, ZHANG Dong, WANG Wenjing∗, DONG Yan, HU Xiufang. Analysis of Typical Air Pollution Event in Wuhu During Spring Festival in 2020 [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(2): 127-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||