[1] |
Koppanen M, Kesti T, Kokko M, et al . An online flow-imaging particle counter and conventional water quality sensors detect
|
|
drinking water contamination in the presence of normal water quality fluctuations [J]. Water Research, 2022, 213: 118149-
|
11 |
8161.
|
[2] |
Sun Y, Chen Z, Wu G X, et al. Characteristics of water quality of municipal wastewater treatment plants in China: Implications
|
|
for resources utilization and management [J]. Journal of Cleaner Production, 2016, 131: 1-9.
|
[3] |
Hu H Z, Sun S L. China Statistical Yearbook on Environment [M]. Beijing: China Statistics Press, 2021: 20-23.
|
|
胡汉舟, 孙守亮. 中国环境统计年鉴 [M]. 北京: 中国统计出版社, 2021: 20-23.
|
[4] |
Tang B, Wei B, Wu D C, et al. Experimental research of turbidity influence on water quality monitoring of COD in UV-visible
|
|
spectroscopy [J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3020-3024.
|
|
汤 斌, 魏 彪, 吴德操, 等. 一种紫外-可见光谱法检测水质COD的浊度影响实验研究 [J]. 光谱学与光谱分析, 2014, 34(11):
|
30 |
20-3024.
|
[5] |
Nezamzadeh-Ejhieh A, Shirzadi A. Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nanoclinoptilolite
|
|
particles towards photodegradation of tetracycline [J]. Chemosphere, 2014, 107: 136-144.
|
[6] |
Li J W, Tong Y F, Guan L, et al. A turbidity compensation method for COD measurements by UV-vis spectroscopy [J]. Optik,
|
20 |
19, 186: 129-136.
|
[7] |
Li J W, Pan S S, Bian J, et al. An improved-bagging model for water chemical oxygen demand measurements using UV-vis
|
|
spectroscopy [J]. IEEE Access, 2021, 9: 161834-161845.
|
[8] |
Chen X W, Yin G F, Zhao N J, et al. Simultaneous determination of nitrate, chemical oxygen demand and turbidity in water
|
|
based on UV-Vis absorption spectrometry combined with interval analysis [J]. Spectrochimica Acta Part A: Molecular and
|
|
Biomolecular Spectroscopy, 2021, 244: 118827-118833.
|
[9] |
Qin L, Zhang C T, Guo Y, et al. Research on visible light indoor location algorithm based on Elman neural network [J]. Acta
|
|
Optica Sinica, 2022, 42(5): 16-23.
|
|
秦 岭, 张崇泰, 郭 瑛, 等. 基于Elman神经网络的可见光室内定位算法研究 [J]. 光学学报, 2022, 42(5): 16-23.
|
[10] |
Cai J N, Meng L, Liu H L, et al. Estimating chemical oxygen demand in estuarine urban rivers using unmanned aerial vehicle
|
|
hyperspectral images [J]. Ecological Indicators, 2022, 139: 108936.
|
[11] |
Jia W S, Zhang H Z, Ma J, et al. Study on the predication modeling of COD for water based on UV-VIS spectroscopy and
|
|
CNN algorithm of deep learning [J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2981-2988.
|
[12] |
Zhao M F, Tang P, Tang B, et al. Application of principal component analysis combined fisher discrimination in water quality
|
|
detection by UV-vis spectroscopy [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6): 436-446.
|
|
赵明富, 唐 平, 汤 斌, 等. 主成分分析联合Fisher 判别在紫外-可见光谱法水质检测中的应用 [J]. 大气与环境光学学报,
|
20 |
18, 13(6): 436-446.
|
[13] |
Ministry of Ecology and Environment. Water quality-Determination of the chemical oxygen demand-Dichromate method: HJ
|
82 |
8―2017 [S]. Beijing: China Standard Press, 2017.
|
|
生态环境部. 水质 化学需氧量的测定 重铬酸盐法: HJ 828―2017 [S]. 北京: 中国标准出版社, 2017.
|
[14] |
Ministry of Ecology and Environment. Intigrated wastewater discharge standard: GB 8978―1996 [S]. Beijing: China Standard
|
|
Press, 1996.
|
|
生态环境部. 污染综合排放标准: GB 8978―1996 [S]. 北京: 中国标准出版社, 1996.
|
[15] |
Hochreiter S, Schmidhuber J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
|
[16] |
Cho K, van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical
|
|
machine translation [C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
|
|
(EMNLP). Doha, Qatar. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014: 1724-1734.
|
[17] |
Miao S, Zhou C L, AlQahtani S A, et al. Applying machine learning in intelligent sewage treatment: A case study of chemical
|
|
plant in sustainable cities [J]. Sustainable Cities and Society, 2021, 72: 103009-103017.
|
[18] |
Zhou F Y, Jin L P, Dong J. Review of convolutional neural network [J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.
|
|
周飞燕, 金林鹏, 董 军. 卷积神经网络研究综述 [J]. 计算机学报, 2017, 40(6): 1229-1251.
|
[19] |
Jiang Y Q, Li C L, Sun L, et al. A deep learning algorithm for multi-source data fusion to predict water quality of urban sewer
|
|
networks [J]. Journal of Cleaner Production, 2021, 318: 128533-128543.
|
[20] |
Hu C S, Cheng F J, Ma L, et al. State of charge estimation for lithium-ion batteries based on TCN-LSTM neural networks [J].
|
|
Journal of the Electrochemical Society, 2022, 169(3): 030544.
|
[21] |
Sagheer A, Kotb M. Time series forecasting of petroleum production using deep LSTM recurrent networks [J].
|
|
Neurocomputing, 2019, 323: 203-213.
|
[22] |
Ma Y, Li H G. A GRU network-based approach for steam drum water level predictions [J]. Journal of Chemical Engineering of
|
|
Japan, 2020, 53(5): 198-205.
|
[23] |
Jourabloo A, Liu X M. Pose-invariant face alignment via CNN-based dense 3D model fitting [J]. International Journal of
|
|
Computer Vision, 2017, 124(2): 187-203.
|
[24] |
Kortli Y, Gabsi S, Voon L F C L Y, et al. Deep embedded hybrid CNN-LSTM network for lane detection on NVIDIA Jetson
|
|
Xavier NX [J]. Knowledge-Based Systems, 2022, 240: 107941.
|
[25] |
Vidal A, Kristjanpoller W. Gold volatility prediction using a CNN-LSTM approach [J]. Expert Systems with Applications,
|
20 |
20, 157: 113481-113490.
|
[26] |
Wang Z F, Man Y, Hu Y S, et al. A deep learning based dynamic COD prediction model for urban sewage [J]. Environmental
|
|
Science: Water Research & Technology, 2019, 5(12): 2210-2218.
|
[27] |
Zhou X H, Wang J P, Cao X K, et al. Simulation of future dissolved oxygen distribution in pond culture based on sliding
|
|
window-temporal convolutional network and trend surface analysis [J]. Aquacultural Engineering, 2021, 95: 102200.
|