[1] Al Hanai A H, Antkiewicz D S, Hemming J D C, et al. Seasonal variations in the oxidative stress and inflammatory potential of PM2. 5 in Tehran using an alveolar macrophage model; The role of chemical composition and sources[J]. Environment international, 2019, 123: 417-427. [2] Laden F, Schwartz J, Speizer F E, et al. Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study[J]. American journal of respiratory and critical care medicine, 2006, 173(6): 667-672. [3] Evans J, van Donkelaar A, Martin R V, et al. Estimates of global mortality attributable to particulate air pollution using satellite imagery[J]. Environmental research, 2013, 120: 33-42. [4] Rojas-Rueda D, de Nazelle A, Teixidó O, et al. Health impact assessment of increasing public transport and cycling use in Barcelona: a morbidity and burden of disease approach[J]. Preventive medicine, 2013, 57(5): 573-579. [5] WHO, YUN L, BING Y. The state of indoor air pollution in developing countries1-an important environmental and public health problem[J]. Foreign Medicine (Health Branch), 2001(03):170-177. WHO,凌云,伊冰.发展中国家室内空气污染状况1——一个重要的环境和公共卫生问题[J].国外医学(卫生学分册),2001(03):170-177. [6] Zhou Yue, Tan O, Zhang Han, Yan Hongmin, Guo Lei, Sun Xuejian, Han Junzan. Research progress of fine particulate matter PM2.5 in the atmospheric environment[J]. China Resources Comprehensive Utilization,2021,39(05):90-93. 周月,谭鸥,张晗,闫红民,郭磊,孙学建,韩军赞.大气环境中细颗粒物PM2.5的研究进展[J].中国资源综合利用,2021,39(05):90-93. [7] Yang, Chun-Liang. A study on the relationship between urban economy and PM2.5[J]. Science and Technology Wind,2019(33):133. doi:10.19392/j.cnki.1671-7341.201933114. 杨春亮.城市经济与PM2.5关系的研究[J].科技风,2019(33):133.DOI:10.19392/j.cnki.1671-7341.201933114. [8] ZHAO Xue,HOU Lili,WANG Xinlong,WU Fengfang,LIANG Shuang,ZHAO Wenji. Simulation of spatial divergence of PM_(2.5) and PM_(10) concentrations in Beijing in 2019 based on LUR model[J]. Journal of Environmental Science,2020,40(11):4060-4069.DOI:10.13671/j.hjkxxb.2020.0152. 赵雪,侯丽丽,王鑫龙,武高峰,梁爽,赵文吉.基于LUR模型的2019年北京地区PM_(2.5)与PM_(10)浓度空间分异模拟[J].环境科学学报,2020,40(11):4060-4069.DOI:10.13671/j.hjkxxb.2020.0152. [9] Wang De-Dong,Qin Cong. Regional PM_(2.5) spatio-temporal regression modeling and prediction[J]. China Environmental Monitoring,2019,35(05):107-113.DOI:10.19316/j.issn.1002-6002.2019.05.13. 王德冬,秦聪.区域PM_(2.5)时空回归建模与预测[J].中国环境监测,2019,35(05):107-113.DOI:10.19316/j.issn.1002-6002.2019.05.13. [10] Toderici G , O'Malley S M , Hwang S J , et al. Recurrent Neural Network Regularization. [11] Hochreiter S , Schmidhuber J . Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780. [12] Cho K , Merrienboer B V , Gulcehre C , et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J]. Computer Science, 2014. [13] Huang Jie,Zhang Feng,Du Zhenhong,Liu Renyi,Cao Xiaobei. PM_(2.5) hourly concentration prediction based on RNN-CNN integrated deep learning model[J]. Journal of Zhejiang University (Science Edition),2019,46(03):370-379. 黄婕,张丰,杜震洪,刘仁义,曹晓裴.基于RNN-CNN集成深度学习模型的PM_(2.5)小时浓度预测[J].浙江大学学报(理学版),2019,46(03):370-379. [14] Duan Dagao, Zhao Zhendong, Liang Shaohu, Yang Weijie, Han Zhongming. LSTM-based PM2.5 concentration prediction model[J]. Computer Measurement and Control,2019,27(03):215-219.DOI:10.16526/j.cnki.11-4762/tp.2019.03.044. 段大高,赵振东,梁少虎,杨伟杰,韩忠明.基于LSTM的PM2.5浓度预测模型[J].计算机测量与控制,2019,27(03):215-219.DOI:10.16526/j.cnki.11-4762/tp.2019.03.044. [15] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[J]. Advances in neural information processing systems, 2014, 27. [16] Sean J. Taylor, Benjamin Letham (2018) Forecasting at scale. The American Statistician 72(1):37-45
|