[1] CHAHINE M T. The hydrological cycle and its influence on climate [J]. Nature, 1992, 359(6394): 373-80. [2] J. C B, R. N A, A. K S, et al. Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): retrieval framework and first results %J Atmospheric Measurement Techniques [J]. 2022, 15(3): 605-26. [3] FERREIRA A P, NIETO R, GIMENO L. Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive %J Earth System Science Data [J]. 2019, 11(2): 603-27. [4] TURNER D D, LESHT B M, CLOUGH S A, et al. Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience %J American Meteorological Society [J]. 2003, 20(1): 117-32. [5] 章桦萍. 差分吸收激光雷达探测二氧化碳柱浓度的数据处理与误差分析 [D], 2019. [6] ROCKEN C, HOVE T V, JOHNSON J, et al. GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology %J Journal of Atmospheric and Oceanic Technology [J]. 1995, 12(3): 468-78. [7] RALPH F M, DETTINGER M D. Storms, floods, and the science of atmospheric rivers %J Eos, Transactions American Geophysical Union [J]. 2011, 92(32): 265-6. [8] L M J, TOM A, T S K, et al. Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor. %J Applied optics [J]. 2004, 43(15): 3110-21. [9] CHAMPOLLION C, MASSON F, BOUIN M-N, et al. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment %J Atmospheric Research [J]. 2004, 74(1): 253-74. [10] III R R N, THAYER J P. Raman Lidar Profiling of Tropospheric Water Vapor over Kangerlussuaq, Greenland %J Journal of Atmospheric and Oceanic Technology [J]. 2011, 28(9): 1141-8. [11] COONEY J A. MEASUREMENTS ON THE RAMAN COMPONENT OF LASER ATMOSPHERIC BACKSCATTER %J Applied Physics Letters [J]. 2003, 12(2): 40. [12] MELFI S H, JR. J D L, MCCORMICK M P. OBSERVATION OF RAMAN SCATTERING BY WATER VAPOR IN THE ATMOSPHERE %J Applied Physics Letters [J]. 2003, 15(9): 295. [13] FERRARE R A, MELFI S H, WHITEMAN D N, et al. A Comparison of Water Vapor Measurements Made by Raman Lidar and Radiosondes %J Journal of Atmospheric and Oceanic Technology [J]. 1995, 12(6): 1177-95. [14] 张钰星. 多波段拉曼激光雷达大气气溶胶光学参量的精细探测技术研究 [D], 2019. [15] PANAGIOTIS S, GIANNIS P, C. S P, et al. Autonomous Differential Absorption Laser Device for Remote Sensing of Atmospheric Greenhouse Gases %J Remote Sensing [J]. 2022, 14(3): 460-. [16] 洪光烈, 李嘉唐, 王建宇, et al. 0.94μm差分吸收激光雷达地基工作的进展 %J 红外与激光工程 [J]. 2019, 48(12): 77-84. [17] SCHOTLAND R M J S M S M. The determination of the vertical profile of atmospheric gases by means of a ground based optical radar [J]. 1995, 112: 335-. [18] SCHOTLAND R J. Some observations of the vertical profile of water vapor by means of a laser optical radar(Measurement and theory, including signal to noise and transfer function calculations, of atmospheric water vapor using ruby laser optical radar) [J]. 1966: 273-83. [19] WERNER C, HERRMANN H. Lidar measurements of the vertical absolute humidity distribution in the boundary layer [J]. J Appl Meteorol Clim, 1981, 20(4): 476-81. [20] ZUEV V V, ZUEV V E, MAKUSHKIN Y S, et al. Laser sounding of atmospheric humidity: experiment [J]. Appl Opt, 1983, 22(23): 3742-6. [21] HIGDON N S, BROWELL E V, PONSARDIN P, et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols [J]. Appl Opt, 1994, 33(27): 6422-38. [22] WULFMEYER V, B?SENBERG J. Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications [J]. Appl Opt, 1998, 37(18): 3825-44. [23] BRUNEAU D, QUAGLIA P, FLAMANT C, et al. Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results [J]. Appl Opt, 2001, 40(21): 3462-75. [24] VOGELMANN H, TRICKL T. Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station [J]. Appl Opt, 2008, 47(12): 2116-32. [25] WAGNER G, BEHRENDT A, WULFMEYER V, et al. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar [J]. Appl Opt, 2013, 52(11): 2454-69. [26] MACHOL J, AYERS T, SCHWENZ K, et al. Preliminary Measurements with an Automated Compact Differential Absorption Lidar for the Profiling of Water Vapor [J]. Appl Opt, 2004, 43: 3110-21. [27] NEHRIR A R, REPASKY K S, CARLSTEN J L, et al. Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL) [J]. J Atmos Ocean Tech, 2009, 26(4): 733-45. [28] NEHRIR A R, REPASKY K S, CARLSTEN J L. Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere [J]. J Atmos Ocean Tech, 2011, 28(2): 131-47. [29] NEHRIR A R, REPASKY K S, CARLSTEN J L. Micropulse water vapor differential absorption lidar: transmitter design and performance [J]. Opt Express, 2012, 20(22): 25137-51. [30] SPULER S M, REPASKY K S, MORLEY B, et al. Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor [J]. Atmos Meas Tech, 2015, 8(3): 1073-87. [31] SPULER S M, HAYMAN M, STILLWELL R A, et al. MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling [J]. Atmos Meas Tech, 2021, 14(6): 4593-616. [32] LIU Q, JANICOT S, GEORGES P, et al. Coherent combination of micropulse tapered amplifiers at 828 nm for direct-detection LIDAR applications [J]. Opt Lett, 2023, 48(2): 489-92. [33] NEWSOM R K, TURNER D D, LEHTINEN R, et al. Evaluation of a compact broadband differential absorption lidar for routine water vapor profiling in the atmospheric boundary layer [J]. J Atmos Ocean Tech, 2020, 37(1): 47-65. [34] YU J, CHENG Y, KONG Z, et al. Broadband continuous-wave differential absorption lidar for atmospheric remote sensing of water vapor [J]. Opt Express, 2024, 32(3): 3046-61. [35] 方林. 基于连续波成像激光雷达的近地面水汽廓线探测技术研究 [D]; 西安理工大学, 2022. [36] WIRTH M, FIX A, MAHNKE P, et al. The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance [J]. Appl Phys B, 2009, 96(1): 201-13. [37] 洪光烈, 李嘉唐, 孔伟, et al. 935nm差分吸收激光雷达系统及对流边界层水汽廓线探测 [J]. 光学学报, 2017, 37(02): 25-33. [38] CARROLL B J, NEHRIR A R, KOOI S A, et al. Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): retrieval framework and first results [J]. Atmos Meas Tech, 2022, 15(3): 605-26. [39] 陈胜哲. 大气水汽探测激光雷达系统仿真与数据反演 [D], 2014. [40] 李嘉唐. 高分辨率全天时水汽探测差分吸收激光雷达技术研究 [D], 2019. [41] Harvard. The HITRAN Database[EB/OL]. http://www.hitran.com, 2015.
|