参考文献: [1] Dai H X, Song W M. Health effects of atmospheric PM2.5[J]. Foreign Medical Sciences(Section of Hygiene), 2001, (5): 299-303 戴海夏, 宋伟民. 大气PM2.5的健康影响[J]. 国外医学(卫生学分册), 2001, (5): 299-303 [2] Mao S N, Ma Y M, Cai Y Q, et al. Current Status and Progress of PM2.5 Detection Standards and Traceability Methods (continued) [J]. China Metrology, 2013, (4): 22-24 毛朔南, 马宇明, 蔡冶强,等. PM2.5检测标准及量值溯源方法现状及进展(续) [J].中国计量, 2013, (4): 22-24 [3] Wang J, Christopher S. A. Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies[J]. Geophysical Research Letters, 2003, 30(21): 2095 [4] Liu Y, Sarnat J A., Kilaru A, et al. Estimating ground-level PM2.5 in the eastern united states using satellite remote sensing[J]. Environmental Science & Technology, 2005, 39(9): 3269-3278 [5] Van D A, Martin R V, Park R J. Estimating ground‐level PM2.5 using aerosol optical depth determined from satellite remote sensing[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D21): D21201 [6] Wang Z F, Chen L F, Tao J, et a. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method[J]. Remote Sensing of Environment, 2010, 114: 50-63 [7] Tian J, Chen D. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements[J]. Remote Sensing of Environment, 2010, 114: 221-229 [8] Wu Y, Guo J, Zhang X, et al. Synergy of satellite and ground based observations in estimation of particulate matter in eastern China[J]. Science of the Total Environment, 2012, 433: 20-30 [9] Hu X F, Waller L A, Lyapustin A, et al. Estimating ground-level PM2.5 concentrations in the southeastern united states using MAIAC AOD retrievals and a two-stage model[J]. Remote Sensing of Environment, 2014, 140: 220-232 [10] Ma Z, Hu X, Huang L. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science & Technology, 2014, 48: 7436-7444 [11] Chen X L, Li H, Zhang S T, et al. High spatial resolution PM2.5 retrieval using MODIS and ground observation station data based on ensemble random forest[J]. IEEE Access, 2019, 7: 44416-44430 [12] Xue T, Zheng Y X, Tong D, et al. Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000–2016: A machine learning method with inputs from satellites, chemical transport model, and ground observations[J]. Environment International, 2019, 123: 345-357 [13] Li J M, Jin M J, Li H L. Exploring spatial influence of remotely sensed PM2.5 concentration using a developed deep convolutional neural network model[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 454 [14] Yang L, Xu H, Jin Z. Estimating ground-level PM2.5 over a coastal region of China using satellite AOD and a combined model[J]. Journal of Cleaner Production, 2019, 227: 472-482 [15] Toth T D, Zhang J, Reid J S, et al. A bulk-mass-modeling-based method for retrieving particulate matter pollution using CALIOP observations[J]. Atmospheric Measurement Techniques, 2019, 12: 1739-1754 [16] Lakshmi N B, E. Resmi A, Padmalal D. Assessment of PM2.5 using satellite lidar observations: Effect of bio-mass burning emissions over India[J]. Science of Total Environment, 2022, 833: 155215 [17] Ma X J, Huang Z W, Qi S Q, et al. Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations[J]. Science of Total Environment, 2020, 721: 137699 [18] Chu D A, Tsai T C, Chen J P. Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements[J]. Atmospheric Environment, 2013, 79: 172-187 [19] Wang Z F, Chen L F, Tao J H, et al. An empirical method of RH correction for satellite estimation of ground-level PM concentrations[J]. Atmospheric Environment, 2014, 95: 71-81 [20] Zhu H, Wang Y Q, Tao J H, et al. Analysis of aerosol hygroscopic growth based on meteorological elements: A case study of Zhejiang Province[J].Climatic and Environmental Research,2019, 24(2): 186-198 祝好, 王永前, 陶金花,等. 基于气象要素的气溶胶吸湿增长分析: 以浙江省为例[J]. 气候与环境研究, 2019, 24(2): 186-198
|