大气与环境光学学报 ›› 2025, Vol. 20 ›› Issue (3): 385-398.doi: 10.3969/j.issn.1673-6141.2025.03.011

• “激光雷达新技术及其在大气环境中的应用”专辑 • 上一篇    

基于SVMD-SVD算法的激光雷达信号去噪方法

冯永富 1, 李红旭 2*   

  1. 1 南京信息工程大学电子与信息工程学院, 江苏 南京 210044; 2 无锡学院江苏省通感融合光子器件及系统集成工程研究中心, 江苏 无锡 214105
  • 收稿日期:2024-10-15 修回日期:2024-11-28 出版日期:2025-05-28 发布日期:2025-05-26
  • 通讯作者: E-mail: hongxuli@cwxu.edu.cn E-mail:hongxuli@cwxu.edu.cn
  • 作者简介:冯永富 (1998- ), 江苏苏州人, 硕士研究生, 主要从事智能信号处理方面的研究。E-mail: 202212490547@nuist.edu.cn
  • 基金资助:
    江苏省基础研究计划重点项目 (BK20243021), 江苏省产学研合作项目 (BY20230745), 江苏省高等学校基础科学研究面上项目 (22KJB510043), 无锡学院引进人才科研启动专项经费 (550222001, 550221028, 550223012)

Lidar signal denoising method based on SVMD-SVD algorithm

FENG Yongfu 1, LI Hongxu 2*   

  1. 1 School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 Jiangsu Province Engineering Research Center of Photonic Devices and System Integration for Communication Sensing Convergence, Wuxi University, Wuxi 214105, China
  • Received:2024-10-15 Revised:2024-11-28 Online:2025-05-28 Published:2025-05-26
  • Contact: Hong-Xu LI E-mail:hongxuli@cwxu.edu.cn

摘要: 激光雷达信号在实际应用中容易受到太阳背景光和光电探测器暗电流等噪声的干扰, 影响数据的精度与可 靠性。为了有效去除信号中的噪声, 本文提出了一种基于逐次变分模态分解 (SVMD) 和奇异值分解 (SVD) 的去噪方 法。首先, 采用红尾鵟算法 (RTH) 优化SVMD的参数, 以便更精确地分解激光雷达信号并提取本征模态函数 (IMFs)。 随后, 通过排列熵 (PE) 计算获得各IMF 的熵值, 将其分为有效分量和噪声分量, 并对有效分量进行SVD降噪处理。 仿真与实测实验结果表明, 同其他方法相比, 本文所提出的SVMD-SVD方法在去噪后的信号波形最为平滑, 信噪比 最高, 均方根误差最低, 且能够在不失真的情况下有效抑制远距离噪声, 在同等条件下展现出卓越的降噪效果。

关键词: 激光雷达, 噪声处理, 逐次变分模态分解, 奇异值分解

Abstract: In practical applications, lidar signals are often subject to interference from solar background light and the dark current of photodetectors, which compromises the accuracy and reliability of data. To effectively eliminate the noise within the signal, this paper introduces a denoising method based on successive variational mode decomposition (SVMD) and singular value decomposition (SVD). Firstly, the red-tailed hawk (RTH) algorithm is employed to optimize the parameters of SVMD, enabling a more precise decomposition of lidar signals and extraction of intrinsic mode functions (IMFs). Then, the entropy of each IMF is assessed by calculating permutation entropy (PE), which is categorized into effective components and noise component, and the effective component will be undergone SVD-based denoising. Simulation and empirical results demonstrate that, compared with the other methods, the proposed method yields the smoothest signal waveform after denoising, with the highest signal-to-noise ratio and the lowest root mean square error, and can effectively suppresses long-distance noise without distortion, showing superior denoising performance under the same conditions.

Key words: lidar, noise processing, successive variational mode decomposition, singular value decomposition

中图分类号: