大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (6): 630-639.
• “新型卫星载荷大气遥感及应用” 专辑 • 上一篇 下一篇
许健1, 饶兰兰2, DOICU Adrian2, 胡斯勒图3∗, 秦凯4∗
收稿日期:
2022-10-17
修回日期:
2022-11-04
出版日期:
2022-11-28
发布日期:
2022-12-14
通讯作者:
husiletu@radi.ac.cn; qinkai@cumt.edu.cn
E-mail:qinkai@cumt.edu.cn
作者简介:
许健(1982 - ), 江苏无锡人, 博士, 研究员, 主要从事大气遥感反演。E-mail: xujian@nssc.ac.cn
基金资助:
XU Jian1, RAO Lanlan2, DOICU Adrian2, HUSI Letu3∗, QIN Kai4∗
Received:
2022-10-17
Revised:
2022-11-04
Published:
2022-11-28
Online:
2022-12-14
Contact:
Kai Qin
E-mail:qinkai@cumt.edu.cn
摘要: 针对气溶胶被动卫星遥感中由于气溶胶模型的不确定性导致的反演误差, 引入了一种基于贝叶斯理论的新型 气溶胶层高反演算法, 并应用于哨兵5 先导(Sentinel-5P) 卫星的TROPOMI (TROPOspheric Monitoring Instrument) 载 荷。该算法基于不同候选气溶胶模型的模型证据(气溶胶模型的条件概率密度) 确定符合当前观测数据条件的气溶胶 模型, 并通过两种模型选择方案分别得到估算最大值解和估算平均值解作为反演结果。以TROPOMI 观测到的一次真 实野火事件为例, 反演结果和官方产品具有很好的空间一致性, 且明显降低了低估现象, 证明在气溶胶先验知识缺乏 的背景下该算法能够高效选择合适的气溶胶模型, 为今后高光谱卫星气溶胶层高反演的业务化数据处理提供了一种 新的解决方案。
中图分类号:
许健, 饶兰兰, DOICU Adrian, 胡斯勒图∗, 秦凯∗. 基于氧气A 带的高光谱卫星气溶胶层高优化反演[J]. 大气与环境光学学报, 2022, 17(6): 630-639.
XU Jian, RAO Lanlan, DOICU Adrian, HUSI Letu∗, QIN Kai∗. An optimized retrieval algorithm of aerosol layer height from hyperspectral satellites using O2-A band[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 630-639.
[1] | Holben B, Vermote E, Kaufman Y J, et al. Aerosol retrieval over land from AVHRR data-application for atmospheric correction |
[J] | IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 212-222. |
[2] | Levy R C, Mattoo S, Munchak L A, et al. The Collection 6 MODIS aerosol products over land and ocean [J]. Atmospheric |
Measurement Techniques, 2013, 6(11): 2989-3034. | |
[3] | Jackson J M, Liu H Q, Laszlo I, et al. Suomi-NPP VIIRS aerosol algorithms and data products [J]. Journal of Geophysical |
Research: Atmospheres, 2013, 118(22): 12673-12689. | |
[4] | Wang Z T, Li Q,Wang Q, et al. HJ-1 terrestrial aerosol data retrieval using deep blue algorithm [J]. Journal of Remote Sensing, |
20 | 12, 16(3): 596-610. |
王中挺, 厉青, 王桥, 等. 利用深蓝算法从HJ-1 数据反演陆地气溶胶[J]. 遥感学报, 2012, 16(3): 596-610. | |
[5] | Kikuchi M, Murakami H, Suzuki K, et al. Improved hourly estimates of aerosol optical thickness using spatiotemporal variability |
derived from Himawari-8 geostationary satellite [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): | |
34 | 42-3455. |
[6] | Nelson D, Garay M, Kahn R, et al. Stereoscopic height and wind retrievals for aerosol plumes with the MISR INteractive |
eXplorer (MINX) [J]. Remote Sensing, 2013, 5(9): 4593-4628. | |
[7] | Dubovik O, Herman M, Holdak A, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties |
from spectral multi-angle polarimetric satellite observations [J]. Atmospheric Measurement Techniques, 2011, 4(5): 975-1018. | |
[8] | Gu H R, Li Z Q, HouWZ, et al. Information analysis of passive remote sensing imaging retrieval of aerosol layer height based |
on spaceborne polarization crossfire [J]. Acta Optica Sinica, 2023, 43(6): 0601003. | |
顾浩然, 李正强, 侯伟真, 等. 基于星载偏振交火模式的气溶胶层高被动遥感成像反演信息量分析[J]. 光学学报, 2023, | |
43 | (6): 0601003. |
[9] | Chimot J, Veefkind J P, Vlemmix T, et al. Spatial distribution analysis of the OMI aerosol layer height: A pixel-by-pixel |
comparison to CALIOP observations [J]. Atmospheric Measurement Techniques, 2018, 11(4): 2257-2277. | |
[10] | Nanda S, de Graaf M, Veefkind J P, et al. A first comparison of TROPOMI aerosol layer height (ALH) to CALIOP data [J]. |
Atmospheric Measurement Techniques, 2020, 13(6): 3043-3059. | |
[11] | Badaev V V, Malkevich M S. On the possibility of determining the vertical profiles of aerosol attenuation using satellite |
measurements of reflected radiation in the 0.76 micron oxygen band [J]. Akademiia Nauk SSSR Fizika Atmosfery i Okeana, | |
19 | 79, 14: 1022-1030. |
[12] | Gabella M, Guzzi R, Kisselev V, et al. Retrieval of aerosol profile variations in the visible and near infrared: Theory and |
application of the single-scattering approach [J]. Applied Optics, 1997, 36(6): 1328-1336. | |
[13] | Gabella M, Kisselev V, Perona G. Retrieval of aerosol profile variations from reflected radiation in the oxygen absorption A |
band [J]. Applied Optics, 1999, 38(15): 3190-3195. | |
[14] | Corradini S, Cervino M. Aerosol extinction coefficient profile retrieval in the oxygen A-band considering multiple scattering |
atmosphere. Test case: SCIAMACHY nadir simulated measurements [J]. Journal of Quantitative Spectroscopy and Radiative | |
Transfer, 2006, 97(3): 354-380. | |
[15] | Zhang Y, Duan M Z, Lv D R. Retrieving aerosol extinction profile with high spectral resolution radiance in oxygen A-band |
and simulation research [J]. Remote Sensing Technology and Application, 2012, 27(2): 208-219. | |
张岩, 段民征, 吕达仁. 基于氧气A 吸收带高光谱反射信息的气溶胶廓线反演算法及模拟反演验证[J]. 遥感技术与应 | |
用, 2012, 27(2): 208-219. | |
[16] | Geddes A, B¨osch H. Tropospheric aerosol profile information from high-resolution oxygen A-band measurements from space |
[J] | Atmospheric Measurement Techniques, 2015, 8(2): 859-874. |
[17] | Xu X G, Wang J, Wang Y, et al. Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B |
bands: First results from EPIC/DSCOVR at Lagrange-1 point [J]. Geophysical Research Letters, 2017, 44(14): 7544-7554. | |
[18] | Xu X G, Wang J, Wang Y, et al. Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen |
absorption bands: hourly results from EPIC/DSCOVR in deep space [J]. Atmospheric Measurement Techniques, 2019, 12(6): | |
32 | 69-3288. |
[19] | Nanda S, Veefkind J P, de Graaf M, et al. A weighted least squares approach to retrieve aerosol layer height over bright surfaces |
applied to GOME-2 measurements of the oxygen A band for forest fire cases over Europe [J]. Atmospheric Measurement | |
Techniques, 2018, 11(6): 3263-3280. | |
[20] | Chen X, Wang J, Xu X G, et al. First retrieval of absorbing aerosol height over dark target using TROPOMI oxygen B band: |
Algorithm development and application for surface particulate matter estimates [J]. Remote Sensing of Environment, 2021, | |
26 | 5: 112674. |
[21] | Povey A C, Grainger R G. Known and unknown unknowns: uncertainty estimation in satellite remote sensing [J]. Atmospheric |
Measurement Techniques, 2015, 8(11): 4699-4718. | |
[22] | Levy R C, Remer L A, Dubovik O. Global aerosol optical properties and application to moderate resolution imaging spectroradiometer |
aerosol retrieval over land [J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D13210. | |
[23] | Torres O, Tanskanen A, Veihelmann B, et al. Aerosols and surface UV products from ozone monitoring instrument observations: |
An overview [J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D24S47. | |
[24] | Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: the software package OPAC [J]. Bulletin of the American |
Meteorological Society, 1998, 79(5): 831-844. | |
[25] | Hoeting J A, Madigan D, Raftery A E, et al. Bayesian model averaging: A tutorial (with discussions) [J]. Statistical Science, |
19 | 99, 14: 382-417. |
[26] | Kauppi A, Kolmonen P, Laine M, et al. Aerosol-type retrieval and uncertainty quantification from OMI data [J]. Atmospheric |
Measurement Techniques, 2017, 10(11): 4079-4098. | |
[27] | Sasi S, Natraj V, Molina Garc´ıa V, et al. Model selection in atmospheric remote sensing with application to aerosol retrieval |
from DSCOVR/EPIC. Part 2: Numerical analysis [J]. Remote Sensing, 2020, 12(21): 3656. | |
[28] | Tilstra L G, Tuinder O N E, Wang P, et al. Surface reflectivity climatologies from UV to NIR determined from Earth observations |
by GOME-2 and SCIAMACHY [J]. Journal of Geophysical Research: Atmospheres, 2017, 122(7): 4084-4111. | |
[29] | Rao L L, Xu J, Efremenko D S, et al. Optimization of aerosol model selection for TROPOMI/S5P [J]. Remote Sensing, 2021, |
13 | (13): 2489. |
[30] | Doicu A, Trautmann T. Discrete-ordinate method with matrix exponential for a pseudo-spherical atmosphere: Vector case [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(1/2): 159-172. | |
[31] | Molina Garc´ıa V, Sasi S, Efremenko D S, et al. Radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR |
measurements [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 213: 228-240. | |
[32] | HouWZ,Wang J, Xu X G, et al. An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO |
data in KORUS-AQ field campaign [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253: 107161. | |
[33] | Xu J, Schreier F, Doicu A, et al. Assessment of Tikhonov-type regularization methods for solving atmospheric inverse problems |
[J] | Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 274-286. |
[34] | Xu J, Rao L L, Schreier F, et al. Insight into construction of Tikhonov-type regularization for atmospheric retrievals [J]. |
Atmosphere, 2020, 11(10): 1052. | |
[35] | Rao L L, Xu J, Efremenko D S, et al. Hyperspectral satellite remote sensing of aerosol parameters: Sensitivity analysis and |
application to TROPOMI/S5P [J]. Frontiers in Environmental Science, 2022, 9: 770662. | |
[36] | Loyola D G, Xu J, Heue K P, et al. Applying FP ILM to the retrieval of geometry-dependent effective Lambertian equivalent |
reflectivity (GE LER) daily maps from UVN satellite measurements [J]. Atmospheric Measurement Techniques, 2020, 13(2): | |
98 | 5-999. |
[1] | 董鉴韬, 李正强, 谢一凇, 樊程, 洪津, 戴刘新, 顾浩然, 郑杨 . 基于GF-5(02) 卫星DPC数据的2022年春季陆表细粒子气溶胶光学厚度空间分布[J]. 大气与环境光学学报, 2023, 18(4): 323-338. |
[2] | 顾浩然, 李正强, 侯伟真, 裘桢炜, 刘振海, 朱军, 伽丽丽, 罗杰, 洪津, 麻金继 . 紫外多角度偏振探测气溶胶层高的信息量分析初步研究[J]. 大气与环境光学学报, 2023, 18(4): 357-370. |
[3] | 曹媛, 宫明艳, 沈非, 麻金继, 杨光, 林锡文, . 中国区域PM2.5浓度估算以及影响因素解析[J]. 大气与环境光学学报, 2023, 18(3): 245-257. |
[4] | 杨晓钰, 王中挺, 潘光, 熊伟, 周伟, 张连华, 王兆军, . 卫星遥感温室气体的大气观测技术进展[J]. 大气与环境光学学报, 2022, 17(6): 581-597. |
[5] | 加亦瑱, 陶明辉∗, 丁思佳, 刘航语, 曾铭裕, 陈良富. 基于卫星遥感的中国地区XCO2 和XCH4 时空分布研究[J]. 大气与环境光学学报, 2022, 17(6): 679-692. |
[6] | 程璐璐, 施文杰, 夏 果∗, 王江涛, 陈巧芹, 金施群. 偏振氧A 带光谱气溶胶垂直剖面反演的信息量分析和灵敏度研究[J]. 大气与环境光学学报, 2022, 17(3): 360-368. |
[7] | 曹子昊, 曾 议∗, 鲁晓峰, 廖 捷, 杨东上, 常 振, 司福祺, 奚 亮, . 成像差分吸收光谱技术的软件研发与数据反演[J]. 大气与环境光学学报, 2022, 17(2): 249-257. |
[8] | 殷振平, 易 帆, ∗, 王 威, 何 芸, 柳付超, 张云鹏, 余长明, . 基于偏振激光雷达对远距离传输沙尘在局地混合过程的观测研究[J]. 大气与环境光学学报, 2021, 16(4): 299-306. |
[9] | 吴孔逸, 侯伟真∗, 史 正, 许 华, 温亚南. 基于卫星多角度观测的气溶胶遥感反演算法研究进展[J]. 大气与环境光学学报, 2021, 16(4): 283-298. |
[10] | 杨太平, 司福祺∗, 周海金, 赵敏杰, 罗宇涵, 刘建国. EMI 云量反演及与TROPOMI 的对比研究[J]. 大气与环境光学学报, 2021, 16(3): 223-230. |
[11] | 叶函函, 王先华∗, 吴时超, 李 超, 李志伟, 施海亮, 熊 伟. 高分五号卫星GMI 大气CO2 反演方法[J]. 大气与环境光学学报, 2021, 16(3): 231-238. |
[12] | 提汝芳∗, 黄红莲, 刘 晓, 樊依哲, 王佳佳, 孙晓兵, 洪 津, . 基于DPC 的中国部分区域陆地气溶胶光学厚度反演[J]. 大气与环境光学学报, 2021, 16(3): 239-246. |
[13] | 乔 瑞, 伽丽丽∗, 许 华, 李正强, ∗, 朱思峰, 谢一凇, 洪 津, 代海山, 麻金继. 基于高分五号DPC 氧气A 吸收波段的云顶压强反演[J]. 大气与环境光学学报, 2021, 16(3): 256-268. |
[14] | 赵慧洁, 米致远, 马晓航, 贾国瑞. 基于红外光谱的大气温湿度反演研究进展[J]. 大气与环境光学学报, 2020, 15(2): 81-89. |
[15] | 刘东, 周雨迪, 朱小磊, 陈扬, 徐沛拓, 刘崇, 王南朝, 沈雪. 大气海洋高光谱分辨率激光雷达鉴频特性研究[J]. 大气与环境光学学报, 2020, 15(1): 48-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||