[1] Baran A J. From the single-scattering properties of ice crystals to climate prediction: A way forward[J]. Atmospheric Research, 2012, 112: 45-69. [2] Liou K N. Influence of Cirrus Clouds on Weather and Climate Processes - a Global Perspective[J]. Monthly Weather Review, 1986, 114(6): 1167-1199. [3] Lawson R P, Woods S, Jensen E, et al. A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils[J]. Journal of Geophysical Research-Atmospheres, 2019, 124(17-18): 10049-10090. [4] Bailey M P, Hallett J. A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field Studies[J]. Journal of the Atmospheric Sciences, 2009, 66(9): 2888-2899. [5] Yang P, Gao B-C, Baum B A, et al. Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D15): 17267-17291. [6] Mischenko M, Hovenier J W, Travis L D. Light scattering by nonspherical particles: Academic press San Diego, Calif., 2000. [7] Jacobowitz H. A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1971, 11(6): 691 - 695. [8] Yee K. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302 - 307. [9] Yang P, Liou K N. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 1996, 13(10): 2072 - 2085. [10] Sun W B, Loeb N G, Tanev S, et al. Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium[J]. Applied Optics, 2005, 44(10): 1977-1983. [11] Macke A, Mishchenko M I, Muinonen K, et al. Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method[J]. Optics Letters, 1995, 20(19): 1934 - 1936. [12] Mishchenko M I, Sassen K. Depolarization of lidar returns by small ice crystals: An application to contrails[J]. Geophysical Research Letters, 1998, 25(3): 309 - 312. [13] Bi L, Yang P. Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 138: 17-35. [14] Purcell E M, Pennypacker C R. Scattering and Absorption of Light by Nonspherical Dielectric Grains[J]. Astrophysical Journal, 1973, 186(2): 705-714. [15] Draine B T, Flatau P J. Discrete-Dipole Approximation for Scattering Calculations[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 1994, 11(4): 1491-1499. [16] Yurkin M A, Hoekstra A G. The discrete dipole approximation: An overview and recent developments[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 106(1-3): 558-589. [17] Cai Q, Liou K N. Polarized-Light Scattering by Hexagonal Ice Crystals - Theory[J]. Applied Optics, 1982, 21(19): 3569 - 3580. [18] Mishchenko M, Macke A. Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission[J]. Journal of Geophysical Research-Atmospheres, 1998, 103(D2): 1799-1805. [19] Noel V, Ledanois G, Chepfer H, et al. Computation of a single-scattering matrix for nonspherical particles randomly or horizontally oriented in space[J]. Applied Optics, 2001, 40(24): 4365 - 4375. [20] Borovoi A G, Kustova N V, Oppel U G. Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation[J]. Optical Engineering, 2005, 44(7): 071208. [21] Borovoi A G, Grishin I A. Scattering matrices for large ice crystal particles[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 2003, 20(11): 2071 - 2080. [22] Borovoi A, Konoshonkin A, Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 146: 181-189. [23] Konoshonkin A, Kustova N, Borovoi A. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 164: 175-183. [24] Konoshonkin A, Borovoi A, Kustova N, et al. Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 195: 132-140. [25] Konoshonkin A, Borovoi A, Kustova N, et al. Power laws for backscattering by ice crystals of cirrus clouds[J]. Opt Express, 2017, 25(19): 22341-22346. [26] Okamoto H, Sato K, Borovoi A, et al. Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar[J]. Opt Express, 2019, 27(25): 36587 - 36600. [27] Okamoto H, Sato K, Borovoi A, et al. Wavelength dependence of ice cloud backscatter properties for space-borne polarization lidar applications[J]. Opt Express, 2020, 28(20): 29178-29191. [28] Schmitt C G, Heymsfield A J. On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus[J]. Journal of the Atmospheric Sciences, 2007, 64(12): 4514-4519. [29] Zhu X H, Wang Z Z, Konoshonkin A, et al. Backscattering properties of randomly oriented hexagonal hollow columns for lidar application[J]. Optics Express, 2023, 31(21): 35257-35271. [30] Zhu X H, Wang Z Z, Liu D, et al. The First Global Insight of Cirrus Clouds Characterized by Hollow Ice Crystals From Space-Borne Lidar[J]. Geophysical Research Letters, 2024, 51(10). [31] Del Guasta M. Simulation of LIDAR returns from pristine and deformed hexagonal ice prisms in cold cirrus by means of "face tracing"[J]. Journal of Geophysical Research-Atmospheres, 2001, 106(D12): 12589-12602. [32] Bi L, Yang P, Kattawar G W, et al. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(9): 1492-1508. [33] Sun B Q, Yang P, Kattawar G W, et al. Physical-geometric optics method for large size faceted particles[J]. Optics Express, 2017, 25(20): 24044-24060. [34] Timofeev D, Konoshonkin A, Kustova N. Modified Beam-Splitting 1 (MBS-1) Algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles[J]. Atmospheric and Oceanic Optics, 2018, 31: 642 - 649. [35] Kustova N, Konoshonkin A, Kokhanenko G, et al. Lidar backscatter simulation for angular scanning of cirrus clouds with quasi-horizontally oriented ice crystals[J]. Optics Letters, 2022, 47(15): 3648-3651. [36] Konoshonkin A, Borovoi A, Kustova N, et al. Light scattering by atmospheric ice crystals within the physical optics approximation[M]. FIZMATLIT: Moscow, Russia, 2022: 382. [37] Kustova N, Konoshonkin A, Shishko V, et al. Depolarization Ratio for Randomly Oriented Ice Crystals of Cirrus Clouds[J]. Atmosphere, 2022, 13(10). [38] Yang P, Liou K N. Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 1997, 14(9): 2278-2289. [39] Tai C-T, Antennas I, Propagation S, et al. Dyadic Green functions in electromagnetic theory[M]. 2nd. Piscataway, NJ: IEEE Press, 1994. [40] Mishchenko M I, Travis L D, Lacis A A. Scattering, absorption, and emission of light by small particles[M]. Cambridge university press, 2002. [41] Franz W. Zur Formulierung des Huygensschen Prinzips[J]. Zeitschrift für Naturforschung A, 1948, 3(8-11): 500-506. [42] Karczewski B, Wolf E. Comparison of Three Theories of Electromagnetic Diffraction at an Aperture.* Part II: The Far Field[J]. JOSA, 1966, 56(9): 1214-1219. [43] Konoshonkin A V, Kustova N V, Borovoi A G, et al. Light scattering by ice crystals of cirrus clouds: comparison of the physical optics methods[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2016, 182: 12-23. [44] Vesperinas M N. Scattering and diffraction in physical optics[M]. World Scientific Publishing Company, 2006. [45] Borovoi A, Konoshonkin A, Kustova N. Backscattering reciprocity for large particles[J]. Optics Letters, 2013, 38(9): 1485-1487. [46] Chiruta M. The capacitance of solid and hollow hexagonal ice columns[J]. Geophysical Research Letters, 2005, 32(5): L05803. [47] Yang P, Zhang Z B, Kattawar G W, et al. Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties[J]. Journal of Applied Meteorology and Climatology, 2008, 47(9): 2311-2330. [48] Takano Y, Liou K N. Radiative-Transfer in Cirrus Clouds .3. Light-Scattering by Irregular Ice Crystals[J]. Journal of the Atmospheric Sciences, 1995, 52(7): 818-837. [49] Yang P, Bi L, Baum B A, et al. Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 μm[J]. Journal of the Atmospheric Sciences, 2013, 70(1): 330 - 347. [50] Mitchell D L, Arnott W P. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology[J]. Journal of Atmospheric Sciences, 1994, 51(6): 817 - 832. [51] Bi L, Yang P. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 189: 228-237. [52] Noel V, Ledanois G, Chepfer H, et al. Computation of a single-scattering matrix for nonspherical particles randomly or horizontally oriented in space[J]. Applied Optics, 2001, 40(24): 4365-4375. [53] Hu Y X, Winker D, Vaughan M, et al. CALIPSO/CALIOP Cloud Phase Discrimination Algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(11): 2293-2309. [54] Wehr T, Kubota T, Tzeremes G, et al. The EarthCARE mission – science and system overview[J]. Atmospheric Measurement Techniques, 2023, 16(15): 3581-3608. [55] Zha C, Bu L, Li Z, et al. Aerosol optical property measurement using the orbiting high-spectral-resolution lidar on board the DQ-1 satellite: retrieval and validation[J]. Atmospheric Measurement Techniques, 2024, 17(14): 4425-4443. [56] Hu Y. Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination[J]. Geophysical Research Letters, 2007, 34(11). [57] Kokhanenko G P, Balin Y S, Klemasheva M G, et al. Scanning polarization lidar LOSA-M3: opportunity for research of crystalline particle orientation in the ice clouds[J]. Atmospheric Measurement Techniques, 2020, 13(3): 1113-1127. [58] Borovoi A, Konoshonkin A, Kustova N, et al. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2018, 212: 88-96. [59] Noel V, Roy G, Bissonnette L, et al. Analysis of lidar measurements of ice clouds at multiple incidence angles[J]. Geophysical Research Letters, 2002, 29(9). [60] Noel V, Sassen K. Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations[J]. Journal of Applied Meteorology, 2005, 44(5): 653-664. [61] Saito M, Yang P. Generalization of Atmospheric Nonspherical Particle Size: Interconversions of Size Distributions and Optical Equivalence[J]. Journal of the Atmospheric Sciences, 2022, 79(12): 3333 - 3349. [62] Okamoto H, Iwasaki S, Yasui M, et al. An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar[J]. Journal of Geophysical Research-Atmospheres, 2003, 108(D7). [63] Stephens G L, Tsay S C, Stackhouse P W, et al. The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback[J]. Journal of the Atmospheric Sciences, 1990, 47(14): 1742 - 1753.
|