[1]
Wei Jing, Sun Lin, Liu Shuangshuang, et al. Response of particulate matter pollution
to land cover change [J]. Acta Ecologica Sinica, 2015, 35(16): 5495-5506(in Chinese).
韦晶,孙林,刘双双,等.大气颗粒物污染对土地覆盖变化的响应[J].生态学报, 2015, 35(16): 5495-5506.
[2]
Zhou Kan. Spatial and temporal differences and concentration characteristics of environmental pollution
in China [J]. Geographic Science, 2016, 36(07): 989-997(in Chinese).
周侃.中国环境污染的时空差异与集聚特征[J].地理科学, 2016, 36(07): 989-997.
[3]
Li Mingsheng, Zhang Jianhui, Zhang Yinjun, et al. Evolution of temporal and spatial patterns
of PM10 pollution in China in recent 10 years [J]. Acta Geographica, 2013, 68(11): 1504-1512(in Chinese).
李名升,张建辉,张殷俊,等.近10年中国大气PM10污染时空格局演变[J].地理学报, 2013, 68(11): 1504-1512.
[4]
Han Ruiying, Chen Jian, Wang Bin. Using LUR model to simulate the spatial distribution of PM2.5
concentration in Hangzhou [J]. Journal of Environmental Sciences, 2016, 36(09): 3379-3385(in Chinese).
汉瑞英,陈健,王彬.利用LUR模型模拟杭州市PM2.5质量浓度空间分布[J].环境科学学报, 2016, 36(09): 3379-3385.
[5]
Wang Guochen, Wang Jue, XinYujie, et al. Study on PM10 and NO$_2$ transport routes and potential
sources in Tianjin [J]. China Environmental Science, 2014, 34(12): 3009-3016(in Chinese).
王郭臣,王珏,信玉洁,等.天津PM10和NO$_2$输送路径及潜在源区研究[J].中国环境科学, 2014, 34(12): 3009-3016.
[6]
Duan Jiexiong, Zhai Weixin, Cheng Chengqi, et al.Analysis of Socio-economic Influencing Factors on
Spatial Distribution of PM2.5 Pollution in China [J]. Environmental Science, 2018, 39(5): 2498-2504(in Chinese).
段杰雄, 翟卫欣, 程承旗, 等. 中国PM2.5 污染空间分布的社会经济影响因素分析[J]. 环境科学, 2018, 39(5): 2498-2504.
[7]
Zhang Shengling, Wang Yuhan, Li Yue, et al. Spatial distribution characteristics and influencing
factors of fog and haze in China [J]. Population, resources and environment in China, 2017, 27(9): 15-22(in Chinese).
张生玲, 王雨涵,李跃, 等. 中国雾霾空间分布特征及影响因素分析[J]. 中国人口$bullet$资源与环境, 2017, 27(9): 15-22.
[8]
Fu Liwei, Guo Xiurui. Advances in assessment methods of air pollution exposure level in China [J].
Environmental Science and Technology, 2015, 38(S2): 226-230(in Chinese).
符立伟,郭秀锐.国内空气污染暴露水平评价方法研究进展[J].环境科学与技术, 2015, 38(S2): 226-230.
[9]
Ross Z, Jerrett M, Ito K, et al.A land use regression for predicting fine particulate matter
concentrations in the New York City region [J]. Atmos Environ, 2007, 41(11): 2255-2269.
[10]
Ha H, Olson R, Bian L, et al. Analysis of heavy metal sources in soil using kriging interpolation
on principal components [J]. Environmental Science & Technology, 2014, 48(9): 4999-5007.
[11]
Henderson S B, Beckerman B, Jerrett M, et al. Applicationof land use regression to estimate
long-term concentrations of traffic-related nitrogen oxides and fine particulate matter [J].
Environmental Science and Technology, 2007, 41(7): 2422-2428.
[12]
Briggs D, Collins S, Elliot P, et al. Mapping urban air pollution using GIS: a regression
based approach [J]. Geogr. Inf. Sci, 1997, 11: 699-718.
[13]
Tan H B, Liu L, Fan S J, et al. Aerosol optical properties and mixing state of black carbon in
the Pearl River Delta, China [J]. Atmospheric Environment. 2016, 131: 196-208.
[14]
Chen L, Du S Y, Bai Z P, et al. Application of land use regression for estimating concentrations
of major outdoor air pollutants in Jinan, China [J]. Journal of Zhejiang University-SCIENCE A
(Applied Physics & Engineering), 2010, 11: 857-867.
[15]
Wu Jiansheng, Xie Wudan, Li Jiacheng. Application of land use regression model in the study of temporal
and spatial differentiation of atmospheric pollution [J]. Environmental Science, 2016, 37(02): 413-419(in Chinese).
吴健生,谢舞丹,李嘉诚.土地利用回归模型在大气污染时空分异研究中的应用[J].环境科学, 2016, 37(02): 413-419.
[16]
Liu J K, Zhu L J, Wang H H, et al. Dry deposition of particulate matter at an urban forest,
wetland and ake surface in Beijing [J]. Atmospheric Environment, 2016(125): 78-187.
[17]
Health Effects Institute. Traffic-Related Air Pollution: A Critical Review of the Literature on
Emissions, exposure, and Health Effects [R]. Special Report 17, 2010.
[18]
Hoek, G. Beelen, R., Hoogh K.A review of land-use regression models to assess spatial variation of
outdoor air pollution [J]. Atmospheric Environment. 2008, 42: 7561-7578.
[19]
Vapnik V N. The Nature of Statistical Learning Theory [M]. Springer, 1995. 8 (6): 988-999.
[20]
Zhang Zaixu, Song Jiekun, Zhang Yu. A new financial crisis early warning model based on support vector
machine [J]. Journal of China Petroleum University (Natural Science Edition), 2006 (04): 132-136(in Chinese).
张在旭,宋杰鲲,张宇.一种基于支持向量机的企业财务危机预警新模型[J].中国石油大学学报(自然科学版), 2006(04): 132-136.
[21]
Lanhao, Zhang Guozhong, Liu Gang, et al. Prediction of startup yield stress of gelled crude oil
by support vector regression [J]. Journal of China Petroleum University (Natural Science Edition), 2008 (03): 119-121, 127(in Chinese).
兰浩,张国忠,刘刚,等.应用支持向量回归预测胶凝原油启动屈服应力[J].中国石油大学学报(自然科学版), 2008(03):119-121, 127.
[22]
Wang Xia, Wang Zhanqi, JinGui, et al. Prediction of cultivated land area based on kernel function
support vector regression [J]. Journal of Agricultural Engineering, 2014, 30(04): 204-211(in Chinese).
王霞,王占岐,金贵,等.基于核函数支持向量回归机的耕地面积预测[J].农业工程学报, 2014, 30(04): 204-211.
[23]
Yang Haiou, Chen Wenbo, Liang Zhaofeng. The relationship between PM2.5 concentration and land use types
simulated by LUR model in Nanchang [J]. Journal of Agricultural Engineering, 2017, 33(06): 232-239(in Chinese).
阳海鸥,陈文波,梁照凤.LUR模型模拟的南昌市PM2.5浓度与土地利用类型的关系[J].农业工程学报, 2017, 33(06): 232-239.
|