[1] |
Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis [M]. Cambridge:
|
|
Cambridge University Press, 2013.
|
[2] |
McMurry P H, Woo K S, Weber R, et al. Size distributions of 3-10 nm atmospheric particles: Implications for nucleation
|
|
mechanisms [J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 2000,
|
35 |
8(1775): 2625-2642.
|
[3] |
Woo K S, Chen D R, Pui D Y H, et al. Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle
|
|
events [J]. Aerosol Science and Technology, 2001, 34(1): 75-87.
|
[4] |
Iida K, Stolzenburg M R, McMurry P H, et al. An ultrafine, water-based condensation particle counter and its evaluation under
|
|
field conditions [J]. Aerosol Science and Technology, 2008, 42(10): 862-871.
|
[5] |
Jiang J K, Lee M H, Biswas P. Model for nanoparticle charging by diffusion, direct photoionization, and thermionization
|
|
mechanisms [J]. Journal of Electrostatics, 2007, 65: 209-220.
|
[6] |
Jiang J K, Hogan J C, Chen D R, et al. Aerosol charging and capture in the nanoparticle size range (6-15 nm) by direct
|
|
photoionization and diffusion mechanisms [J]. Journal of Applied Physics, 2007, 102: 034904-034907.
|
[7] |
Kulkarni, Pramod N, Norikazu O, et al. Charging of particles in unipolar coronas irradiated by in-situ soft X-rays: Enhancement
|
|
of capture efficiency of ultrafine particles [J]. Aerosol Science, 2002, 33(9): 1279-1296.
|
[8] |
Shimada M, Han B, Okuyama K, et al. Bipolar charging of aerosol nanoparticles by a soft X-ray photoionizer [J]. Journal of
|
|
Chemical Engineering of Japan, 2002, 35(8): 786-793.
|
[9] |
Han B, Shimada M, Okuyama K, et al. Classification of monodisperse aerosol particles using an adjustable soft X-ray charger
|
[J] |
Powder Technology, 2003, 135-136: 336-344.
|
[10] |
Han B, Shimada M, Okuyama K, et al. Unipolar charging of nanosized aerosol particles using soft X-ray photoionization [J].
|
|
Aerosol Science and Technology, 2003, 37: 330-341.
|
[11] |
Yun K M, Lee S Y, Iskandar F. Effect of X-ray energy and ionization time on the charging performance and nanoparticle
|
|
formation of a soft X-ray photoionization charger [J]. Advanced Powder Technology, 2009, 20: 529-536.
|
[12] |
Jiang J K, Kim C M, Wang X L, et al. Aerosol charge fractions downstream of six bipolar chargers: Effects of ion source,
|
|
source activity, and flowrate [J]. Aerosol Science and Technology, 2009, 48(12): 1207-1216.
|
[13] |
Modesto-Lopez L B, Kettleson E M, Biswas P. Soft X-ray charger (SXC) system for use with electrospray for mobility measurement of bioaerosols [J]. Journal of Electrostatics, 2011, 69(4): 357-364.
|
[14] |
Liu Q L, Chen D R. An electrospray aerosol generator with X-ray photoionizer for particle charge reduction [J]. Journal of
|
|
Aerosol Science, 2014, 76: 148-162.
|
[15] |
Yoon Y H, Bong C, Kim D S. Evaluation of the performance of a soft X-ray charger for the bipolar charging of nanoparticles
|
[J] |
Particuology, 2015, 18: 165-169.[16] Lee H M, Soo K C, Shimada M, et al. Bipolar diffusion charging for aerosol nanoparticle measurement using a soft X-ray
|
|
charger [J]. Journal of Aerosol Science, 2005, 36(7): 813-829.
|
[17] |
Liu Y L, Attoui M, Yang K J, et al. Size-resolved chemical composition analysis of ions produced by a commercial soft X-ray
|
|
aerosol neutralizer [J]. Journal of Aerosol Science, 2020, 147: 105586.
|
[18] |
Kallinger P, Steiner G, Szymanski W W. Characterization of four different bipolar charging devices for nanoparticle charge
|
|
conditioning [J]. Journal of Nanoparticle Research, 2012, 14: 944.
|