Journal of Atmospheric and Environmental Optics ›› 2022, Vol. 17 ›› Issue (4): 453-464.
Previous Articles Next Articles
WU Wenhan, MA Jinji∗, SUN Erchang, GUO Jinyu, YANG Guang, WANG Yuyao
Received:
2020-12-04
Revised:
2022-02-07
Online:
2022-07-28
Published:
2022-07-28
Contact:
文涵 吴
E-mail:wuwenhan@ahnu.edu.cn
CLC Number:
WU Wenhan, MA Jinji∗, SUN Erchang, GUO Jinyu, YANG Guang, WANG Yuyao. Research on cloud parameter inversion method based on deep learning[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 453-464.
[1] | Rossow W B, Mosher F, Kinsella E, et al. ISCCP cloud algorithm intercomparison [J]. Journal of Climate and Applied |
Meteorology, 1985, 24(9): 877-903. | |
[2] | Yang J, Chen B J, Yin Y. Physics of Clouds and Precipitation [M]. Beijing: Meteorological Press, 2011. |
杨 军, 陈宝君, 银 燕. 云降水物理学 [M]. 北京: 气象出版社, 2011. | |
[3] | Li W B. Atmospheric Remote Sensing [M]. Beijing: Peking University Press, 2014. |
李万彪. 大气遥感 [M]. 北京: 北京大学出版社, 2014. | |
[4] | Strabala K I, Ackerman S A, Menzel W P. Cloud properties inferred from 8-12-µm data [J]. Journal of Applied Meteorology, |
19 | 94, 33(2): 212-229. |
[5] | Baum B A, Soulen P F, Strabala K I, et al. Remote sensing of cloud properties using MODIS airborne simulator imagery during |
SUCCESS: 2. Cloud thermodynamic phase [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D9): 11781-11792. | |
[6] | Segal-Rozenhaimer M, Li A L, Das K, et al. Cloud detection algorithm for multi-modal satellite imagery using convolutional |
neural-networks (CNN) [J]. Remote Sensing of Environment, 2020, 237: 111446. | |
[7] | He Y M, Wang H J, Guan H. Application of support vector machines in cloud detection using EOS/MODIS [C]. International |
Symposium on Photoelectronic Detection and Imaging 2009: Advances in Infrared Imaging and Applications, 2009, 7383: | |
20 | 9-216. |
[8] | Yang C P, Guo J. Improved cloud phase retrieval approaches for China′s FY-3A/VIRR multi-channel data using artificial neural |
networks [J]. Optik, 2016, 127(4): 1797-1803. | |
[9] | Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): |
50 | 4-507. |
[10] | Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, |
19 | 98, 86(11): 2278-2324. |
[11] | Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [J]. Communications |
of the ACM, 2017, 60(6): 84-90. | |
[12] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer |
Vision and Pattern Recognition. June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778. | |
[13] | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [C]. Medical Image |
Computing and Computer-Assisted Intervention-MICCAI 2015, 2015: 234-241. | |
[14] | Altini N, Cascarano G D, Brunetti A, et al. Semantic segmentation framework for glomeruli detection and classification in |
kidney histological sections [J]. Electronics, 2020, 9(3): 503. | |
[15] | Hu X L, Liu Z Y, Zhou H Y, et al. Deep HT: A deep neural network for diagnose on MR images of tumors of the hand [J]. |
PLoS One, 2020, 15(8): e0237606. | |
[16] | Huang X D, Zhang H, Zhuo L, et al. TISNet-enhanced fully convolutional network with encoder-decoder structure for tongue |
image segmentation in traditional Chinese medicine [J]. Computational and Mathematical Methods in Medicine, 2020, 2020: | |
60 | 29258. |
[17] | Guo H X, He G J, Jiang W, et al. A multi-scale water extraction convolutional neural network (MWEN) method for GaoFen-1 |
remote sensing images [J]. ISPRS International Journal of Geo-Information, 2020, 9(4): 189. | |
[18] | Wang G J, Wu M J, Wei X K, et al. Water identification from high-resolution remote sensing images based on multidimensional |
densely connected convolutional neural networks [J]. Remote Sensing, 2020, 12(5): 795. | |
[19] | Liu P H, Liu X P, Liu M X, et al. Building footprint extraction from high-resolution images via spatial residual inception |
convolutional neural network [J]. Remote Sensing, 2019, 11(7): 830. | |
[20] | Shi Q, Liu M X, Liu X P, et al. Domain adaption for fine-grained urban village extraction from satellite images [J]. IEEE |
Geoscience and Remote Sensing Letters, 2020, 17(8): 1430-1434. | |
[21] | Wang Y H, Liang B X, Ding M, et al. Dense semantic labeling with atrous spatial pyramid pooling and decoder for highresolution remote sensing imagery [J]. Remote Sensing, 2018, 11(1): 20. |
[22] | Yao X D, Yang H, Wu Y L, et al. Land use classification of the deep convolutional neural network method reducing the loss of |
spatial features [J]. Sensors (Basel), 2019, 19(12): 2792. | |
[23] | Jiang N, Li J Y. An improved semantic segmentation method for remote sensing images based on neural network [J]. Traitement |
Du Signal, 2020, 37(2): 271-278. | |
[24] | Zhan Z Q, Zhang X M, Liu Y, et al. Vegetation land use/land cover extraction from high-resolution satellite images based on |
adaptive context inference [J]. IEEE Access, 2020, 8: 21036-21051. | |
[25] | Venugopal N. Automatic semantic segmentation with DeepLab dilated learning network for change detection in remote sensing |
images [J]. Neural Processing Letters, 2020, 51(3): 2355-2377. | |
[26] | Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation |
[C] | Computer Vision-ECCV 2018, 2018, 833-851. |
[27] | He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE |
Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. | |
[28] | Ben-Dor E. A precaution regarding cirrus cloud detection from airborne imaging spectrometer data using the 1.38 µm water |
vapor band [J]. Remote Sensing of Environment, 1994, 50(3): 346-350. | |
[29] | Wang L Y. Research on Semantic Segmentation of Remote Sensing Images of the Ground Objects Based on Deeplab V3+ |
Network [D]. Harbin: Harbin Institute of Technology, 2020. | |
王蓝玉. 基于 Deeplab V3+ 网络的遥感地物图像语义分割研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020。 |
[1] | ZHANG Sugui , ZHANG Jingjing , XUN Lina , SUN Xiaobing , XIONG Wei , YAN Qing , LI Sui . Cloud detection of GF-5 remote sensing image based on multimodal fusion [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(4): 371-382. |
[2] | GUO Tingwei , HUANG Honglian , SUN Xiaobing , LIU Xiao , TI Rufang . Detection and removal of thin clouds in multispectral images of HJ-2A/B satellites [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(4): 383-400. |
[3] | HOU Mengyu, LI Zhengqiang∗, XIE Yisong, QIAO Rui, XIE Yanqing, QIE Lili, SHI Zheng, . Research on spectral feature cloud detection method of directional polarimetric camera on Chinese satellite [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 598-612. |
[4] | HE Juan, ZHANG Hua, ∗, SU Hongjuan, ZHOU Xixun, CHEN Qi, XIE Bing, YOU Ting. Study on long-term change of global spectral surface albedo [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 279-293. |
[5] | JIA Hongliang, LUO Jun, XIAO Dongsheng∗. Temporal and Spatial Distribution Characteristics of PM2.5 in Chengdu Area Based on Remote Sensing Data and GWR Model [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(6): 529-540. |
[6] | . Cloud Detection of Remote Sensing Images Based on H-SVM with Multi-Feature Fusion [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(1): 58-66. |
[7] | Li Jiaxin, Zhao Peng, Fang Wei∗, Song Shangxiang, . Cloud Detection of Multi-Angle Remote Sensing Image Based on Deep Learning [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 380-392. |
[8] | XIA Yu, CUI Sheng-Cheng, YANG Shi-Zhi. Cloud Detection Method for High Resolution Satellite Image Based on Multi-Dimensional Features [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(6): 465-. |
[9] | LI Jian, MA Jin-Ji, JI Wei. Using General Regression Neural Network to Retrieve Suspend Matter Concentration [J]. Journal of Atmospheric and Environmental Optics, 2010, 5(4): 305-310. |
[10] | LIU Xian-Tong, LIU Qi, FU Yun-Fei, CHENG Jing. A Daytime Cloud Detection Scheme Relying on Five-Channel Measurements from TRMM VIRS [J]. Journal of Atmospheric and Environmental Optics, 2010, 5(2): 128-140. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 818
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||