[1] |
Pöschl U. Atmospheric aerosols: Composition, transformation, climate and health effects [J]. Angewandte Chemie
|
|
International Edition, 2005, 44(46): 7520-7540.
|
[2] |
Tang M J, Cziczo D J, Grassian V H. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud
|
|
condensation, and ice nucleation [J]. Chemical Reviews, 2016, 116(7): 4205-4259.
|
[3] |
Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle [J]. Science, 2001, 294(5549): 2119-
|
|
2124.
|
[4] |
Kaufman Y J, Tanré D, Boucher O. A satellite view of aerosols in the climate system [J]. Nature, 2002, 419(6903): 215-223.
|
[5] |
Zhou J C, Xu X Z, Zhao W X, et al. Simultaneous measurements of the relative-humidity-dependent aerosol light extinction,
|
|
scattering, absorption, and single-scattering albedo with a humidified cavity-enhanced albedometer [J]. Atmospheric
|
|
Measurement Techniques, 2020, 13(5): 2623-2634.
|
[6] |
Burgos M A, Andrews E, Titos G, et al. A global view on the effect of water uptake on aerosol particle light scattering [J].
|
|
Scientific Data, 2019, 6: 157.
|
[7] |
Zhao C S, Yu Y L, Kuang Y, et al. Recent progress of aerosol light-scattering enhancement factor studies in China [J].
|
|
Advances in Atmospheric Sciences, 2019, 36(9): 1015-1026.
|
[8] |
Titos G, Burgos M A, Zieger P, et al. A global study of hygroscopicity-driven light-scattering enhancement in the context of
|
|
other in situ aerosol optical properties [J]. Atmospheric Chemistry and Physics, 2021, 21(17): 13031-13050.
|
[9] |
Peng C, Chen L, Tang M J. A database for deliquescence and efflorescence relative humidities of compounds with atmospheric
|
|
relevance [J]. Fundamental Research, 2022, 2(4): 578-587.
|
[10] |
Martin S T. Phase transitions of aqueous atmospheric particles [J]. Chemical Reviews, 2000, 100(9): 3403-3454.
|
[11] |
Liu Y J, Zhu T, Zhao D F, et al. Investigation of the hygroscopic properties of Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3
|
|
particles by micro-Raman spectrometry [J]. Atmospheric Chemistry and Physics, 2008, 8(23): 7205-7215.
|
[12] |
Tang M J, Chan C K, Li Y J, et al. A review of experimental techniques for aerosol hygroscopicity studies [J]. Atmospheric
|
|
Chemistry and Physics, 2019, 19(19): 12631-12686.
|
[13] |
Cheng Y F, Su H, Koop T, et al. Size dependence of phase transitions in aerosol nanoparticles [J]. Nature Communications,
|
20 |
15, 6: 5923.
|
[14] |
Ma Q X, Liu Y C, He H. The utilization of physisorption analyzer for studying the hygroscopic properties of atmospheric
|
|
relevant particles [J]. The Journal of Physical Chemistry A, 2010, 114(12): 4232-4237.
|
[15] |
Gustafsson R J, Orlov A, Badger C L, et al. A comprehensive evaluation of water uptake on atmospherically relevant mineral
|
|
surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements [J]. Atmospheric Chemistry and
|
|
Physics, 2005, 5(12): 3415-3421.
|
[16] |
Gu W J, Li Y J, Zhu J X, et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using
|
|
a commercial vapor sorption analyzer [J]. Atmospheric Measurement Techniques, 2017, 10(10): 3821-3832.
|
[17] |
Schuttlefield J D, Cox D, Grassian V H. An investigation of water uptake on clays minerals using ATR-FTIR spectroscopy
|
|
coupled with quartz crystal microbalance measurements [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D21):
|
|
D21303.
|
[18] |
Krueger B J, Ross J L, Grassian V H. Formation of microcrystals, micropuddles, and other spatial inhomogenieties in surface
|
|
reactions under ambient conditions: An atomic force microscopy study of water and nitric acid adsorption on MgO(100) and
|
|
CaCO3(10
|
- 14) |
[
|
J] |
Langmuir, 2005, 21(19): 8793-8801.
|
[19] |
Tong H J, Ouyang B, Nikolovski N, et al. A new electrodynamic balance (EDB) design for low-temperature studies:
|
|
Application to immersion freezing of pollen extract bioaerosols [J]. Atmospheric Measurement Techniques, 2015, 8(3): 1183-
|
|
1195.
|
[20] |
Hopkins R J, Mitchem L, Ward A D, et al. Control and characterisation of a single aerosol droplet in a single-beam gradientforce
|
|
optical trap [J]. Physical Chemistry Chemical Physics, 2004, 6(21): 4924-4927.
|
[21] |
Ettner M, Mitra S K, Borrmann S. Heterogeneous freezing of single sulfuric acid solution droplets: Laboratory experiments
|
|
utilizing an acoustic levitator [J]. Atmospheric Chemistry and Physics, 2004, 4(7): 1925-1932.
|
[22] |
Zhang S J, Xu L, Guo X M, et al. Influence of secondary organic coating on hygroscopicity of a sodium chloride core: Based
|
|
on mircro-scale single particle analysis [J]. Environmental Science, 2020, 41(5): 2017-2025.
|
|
张淑佳, 徐 亮, 郭新梅, 等. 二次有机气溶胶壳对氯化钠核吸湿性的影响: 基于单颗粒微观尺度 [J]. 环境科学, 2020, 41
|
(5) |
: 2017-2025.
|
[23] |
Swietlicki E, Hansson H C, Hämeri K, et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured
|
|
with H-TDMA instruments in various environments—A review [J]. Tellus B: Chemical and Physical Meteorology, 2008, 60(3):
|
43 |
2-469.
|
[24] |
Chen L, Peng C, Gu W J, et al. On mineral dust aerosol hygroscopicity [J]. Atmospheric Chemistry and Physics, 2020, 20(21):
|
13 |
611-13626.
|
[25] |
Tang M J, Zhang H H, Gu W J, et al. Hygroscopic properties of saline mineral dust from different regions in China:
|
|
Geographical variations, compositional dependence, and atmospheric implications [J]. Journal of Geophysical Research:
|
|
Atmospheres, 2019, 124(20): 10844-10857.
|
[26] |
Peng C, Gu W J, Li R, et al. Large variations in hygroscopic properties of unconventional mineral dust [J]. ACS Earth and
|
|
Space Chemistry, 2020, 4(10): 1823-1830.
|
[27] |
Tang M J, Gu W J, Ma Q X, et al. Water adsorption and hygroscopic growth of six anemophilous pollen species: The effect of
|
|
temperature [J]. Atmospheric Chemistry and Physics, 2019, 19(4): 2247-2258.
|
[28] |
Chen L, Chen Y Z, Chen L L, et al. Hygroscopic properties of 11 pollen species in China [J]. ACS Earth and Space Chemistry,
|
20 |
19, 3(12): 2678-2683.
|
[29] |
Peng C, Razafindrambinina P N, Malek K A, et al. Interactions of organosulfates with water vapor under sub- and
|
|
supersaturated conditions [J]. Atmospheric Chemistry and Physics, 2021, 21(9): 7135-7148.
|
[30] |
Sullivan R C, Moore M J K, Petters M D, et al. Effect of chemical mixing state on the hygroscopicity and cloud nucleation
|
|
properties of calcium mineral dust particles [J]. Atmospheric Chemistry and Physics, 2009, 9(10): 3303-3316.
|
[31] |
Good N, Coe H, McFiggans G. Instrumentational operation and analytical methodology for the reconciliation of aerosol water
|
|
uptake under sub- and supersaturated conditions [J]. Atmospheric Measurement Techniques, 2010, 3(5): 1241-1254.
|
[32] |
Tang M J, Whitehead J, Davidson N M, et al. Cloud condensation nucleation activities of calcium carbonate and its
|
|
atmospheric ageing products [J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32194-32203.
|
[33] |
Greenspan L. Humidity fixed points of binary saturated aqueous solutions [J]. Journal of Research of the National Bureau of
|
|
Standards Section A: Physics and Chemistry, 1977, 81A(1): 89-96.
|
[34] |
Huneeus N, Schulz M, Balkanski Y, et al. Global dust model intercomparison in AeroCom phase I [J]. Atmospheric Chemistry
|
|
and Physics, 2011, 11(15): 7781-7816.
|
[35] |
Ginoux P, Prospero J M, Gill T E, et al. Global-scale attribution of anthropogenic and natural dust sources and their emission
|
|
rates based on MODIS Deep Blue aerosol products [J]. Reviews of Geophysics, 2012, 50(3): RG3005.
|
[36] |
Textor C, Schulz M, Guibert S, et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom [J].
|
|
Atmospheric Chemistry and Physics, 2006, 6(7): 1777-1813.
|
[37] |
Sokolik I N, Winker D M, Bergametti G, et al. Introduction to special section: Outstanding problems in quantifying the
|
|
radiative impacts of mineral dust [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 18015-18027.
|
[38] |
Tegen I. Modeling the mineral dust aerosol cycle in the climate system [J]. Quaternary Science Reviews, 2003, 22(18/19): 1821-
|
|
1834.
|
[39] |
Bian H S, Zender C S. Mineral dust and global tropospheric chemistry: Relative roles of photolysis and heterogeneous uptake
|
[J] |
Journal of Geophysical Research: Atmospheres, 2003, 108(D21): 4672.
|
[40] |
Liao H, Adams P J, Chung S H, et al. Interactions between tropospheric chemistry and aerosols in a unified general circulation
|
|
model [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D1): 4001.
|
[41] |
Bauer S E, Balkanski Y, Schulz M, et al. Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence
|
|
on tropospheric ozone chemistry and comparison to observations [J]. Journal of Geophysical Research: Atmospheres, 2004, 109
|
(D2) |
: D02304.
|
[42] |
Bauer S E, Koch D. Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing
|
|
in the Goddard Institute for Space Studies general circulation model [J]. Journal of Geophysical Research: Atmospheres, 2005,
|
11 |
0(D17): D17202.
|
[43] |
Knippertz P, Stuut J B W. Mineral Dust: A Key Player in the Earth System [M]. Dordrecht: Springer Netherlands, 2014.
|
[44] |
Abuduwaili J, Gabchenko M V, Xu J R. Eolian transport of salts—A case study in the area of Lake Ebinur (Xinjiang,
|
|
Northwest China) [J]. Journal of Arid Environments, 2008, 72(10): 1843-1852.
|
[45] |
Wang X M, Hua T, Zhang C X, et al. Aeolian salts in Gobi Deserts of the western region of Inner Mongolia: Gone with the
|
|
dust aerosols [J]. Atmospheric Research, 2012, 118: 1-9.
|
[46] |
Usher C R, Michel A E, Grassian V H. Reactions on mineral dust [J]. Chemical Reviews, 2003, 103(12): 4883-4940.
|
[47] |
Krueger B J, Grassian V H, Laskin A, et al. The transformation of solid atmospheric particles into liquid droplets through
|
|
heterogeneous chemistry: Laboratory insights into the processing of calcium containing mineral dust aerosol in the troposphere
|
[J] |
Geophysical Research Letters, 2003, 30(3): 1148.
|
[48] |
Zhao D F, Buchholz A, Mentel T F, et al. Novel method of generation of Ca(HCO3)2 and CaCO3 aerosols and first
|
|
determination of hygroscopic and cloud condensation nuclei activation properties [J]. Atmospheric Chemistry and Physics,
|
20 |
10, 10(17): 8601-8616.
|
[49] |
Guo L Y, Gu W J, Peng C, et al. A comprehensive study of hygroscopic properties of calcium-and magnesium-containing
|
|
salts: Implication for hygroscopicity of mineral dust and sea salt aerosols [J]. Atmospheric Chemistry and Physics, 2019, 19(4):
|
21 |
15-2133.
|
[50] |
Rubasinghege G, Grassian V H. Role(s) of adsorbed water in the surface chemistry of environmental interfaces [J]. Chemical
|
|
Communications, 2013, 49(30): 3071-3094.
|
[51] |
Tang M J, Schuster G, Crowley J N. Heterogeneous reaction of N2O5 with illite and Arizona test dust particles [J]. Atmospheric
|
|
Chemistry and Physics, 2014, 14(1): 245-254.
|
[52] |
Tang M J, Huang X, Lu K D, et al. Heterogeneous reactions of mineral dust aerosol: Implications for tropospheric oxidation
|
|
capacity [J]. Atmospheric Chemistry and Physics, 2017, 17(19): 11727-11777.
|
[53] |
Wang T, Liu Y Y, Deng Y, et al. Adsorption of SO2 on mineral dust particles influenced by atmospheric moisture [J].
|
|
Atmospheric Environment, 2018, 191: 153-161.
|
[54] |
Jia X H, Gu W J, Peng C, et al. Heterogeneous reaction of CaCO3 with NO2 at different relative humidities: Kinetics,
|
|
mechanisms, and impacts on aerosol hygroscopicity [J]. Journal of Geophysical Research: Atmospheres, 2021, 126(11):
|
|
e2021JD034826.
|
[55] |
Zhang R, Jing J, Tao J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective [J].
|
|
Atmospheric Chemistry and Physics, 2013, 13(14): 7053-7074.
|
[56] |
Klimont Z, Kupiainen K, Heyes C, et al. Global anthropogenic emissions of particulate matter including black carbon [J].
|
|
Atmospheric Chemistry and Physics, 2017, 17(14): 8681-8723.
|
[57] |
Zheng B, Tong D, Li M, et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions
|
[J] |
Atmospheric Chemistry and Physics, 2018, 18(19): 14095-14111.
|
[58] |
Chen S Y, Zhang X R, Lin J T, et al. Fugitive road dust PM2.5 emissions and their potential health impacts [J]. Environmental
|
|
Science & Technology, 2019, 53(14): 8455-8465.
|
[59] |
Ojha K, Pradhan N C, Samanta A N. Zeolite from fly ash: Synthesis and characterization [J]. Bulletin of Materials Science,
|
20 |
04, 27(6): 555-564.
|
[60] |
Philip S, Martin R V, Snider G, et al. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented
|
|
fine particulate matter source in global atmospheric models [J]. Environmental Research Letters, 2017, 12(4): 044018.
|
[61] |
Umo N S, Wagner R, Ullrich R, et al. Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled
|
|
pores [J]. Atmospheric Chemistry and Physics, 2019, 19(13): 8783-8800.
|
[62] |
Li W J, Xu L, Liu X H, et al. Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems [J].
|
|
Science Advances, 2017, 3(3): e1601749.
|
[63] |
Kanakidou M, Myriokefalitakis S, Tsigaridis K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients [J].
|
|
Environmental Research Letters, 2018, 13(6): 063004.
|
[64] |
Kim D, Xiao Y, Karchere-Sun R, et al. Atmospheric processing of anthropogenic combustion particles: Effects of acid media
|
|
and solar flux on the iron mobility from fly ash [J]. ACS Earth and Space Chemistry, 2020, 4(5): 750-761.
|
[65] |
Borcherding J A, Chen H H, Caraballo J C, et al. Coal fly ash impairs airway antimicrobial peptides and increases bacterial
|
|
growth [J]. PLoS One, 2013, 8(2): e57673.
|
[66] |
Navea J G, Richmond E, Stortini T, et al. Water adsorption isotherms on fly ash from several sources [J]. Langmuir, 2017, 33
|
(39) |
: 10161-10171.
|
[67] |
Georgakopoulos D G, Després V, Fröhlich-Nowoisky J, et al. Microbiology and atmospheric processes: Biological, physical
|
|
and chemical characterization of aerosol particles [J]. Biogeosciences, 2009, 6(4): 721-737.
|
[68] |
Morris C E, Sands D C, Bardin M, et al. Microbiology and atmospheric processes: Research challenges concerning the impact
|
|
of airborne micro-organisms on the atmosphere and climate [J]. Biogeosciences, 2011, 8(1): 17-25.
|
[69] |
Zheng Y H, Li J, Chen H X, et al. Bioaerosol research: Yesterday, today and tomorrow [J]. Chinese Science Bulletin, 2018, 63
|
(10) |
: 878-894.
|
|
郑云昊, 李 菁, 陈灏轩, 等. 生物气溶胶的昨天、今天和明天 [J]. 科学通报, 2018, 63(10): 878-894.
|
[70] |
Després V R, Alex Huffman J, Burrows S M, et al. Primary biological aerosol particles in the atmosphere: A review [J]. Tellus
|
|
B: Chemical and Physical Meteorology, 2012, 64(1): 15598.
|
[71] |
Sofiev M, Siljamo P, Ranta H, et al. Towards numerical forecasting of long-range air transport of birch pollen: Theoretical
|
|
considerations and a feasibility study [J]. International Journal of Biometeorology, 2006, 50(6): 392-402.
|
[72] |
D'Amato G, Spieksma F T M, Liccardi G, et al. Pollen-related allergy in Europe [J]. Allergy, 1998, 53(6): 567-578.
|
[73] |
Pummer B G, Bauer H, Bernardi J, et al. Chemistry and morphology of dried-up pollen suspension residues [J]. Journal of
|
|
Raman Spectroscopy, 2013, 44(12): 1654-1658.
|
[74] |
Diehl K, Quick C, Matthias-Maser S, et al. The ice nucleating ability of pollen: Part I: Laboratory studies in deposition and
|
|
condensation freezing modes [J]. Atmospheric Research, 2001, 58(2): 75-87.
|
[75] |
Pope F D. Pollen grains are efficient cloud condensation nuclei [J]. Environmental Research Letters, 2010, 5(4): 044015.
|
[76] |
Fang Y M, Ma C M, Bunting M J, et al. Airborne pollen concentration in Nanjing, Eastern China, and its relationship with
|
|
meteorological factors [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(19): 10842-10856.
|
[77] |
Rahman A, Luo C X, Khan M H R, et al. Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors
|
|
on the concentration of airborne pollen in Guangzhou, China [J]. Atmospheric Environment, 2019, 212: 290-304.
|
[78] |
Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: Current
|
|
and emerging issues [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5155-5236.
|
[79] |
Jimenez J L, Canagaratna M R, Donahue N M, et al. Evolution of organic aerosols in the atmosphere [J]. Science, 2009, 326
|
|
(5959): 1525-1529.
|
[80] |
Surratt J D, Gómez-González Y, Chan A W H, et al. Organosulfate formation in biogenic secondary organic aerosol [J]. The
|
|
Journal of Physical Chemistry A, 2008, 112(36): 8345-8378.
|
[81] |
Tolocka M P, Turpin B. Contribution of organosulfur compounds to organic aerosol mass [J]. Environmental Science &
|
|
Technology, 2012, 46(15): 7978-7983.
|
[82] |
Hansen A M K, Hong J, Raatikainen T, et al. Hygroscopic properties and cloud condensation nuclei activation of limonenederived
|
|
organosulfates and their mixtures with ammonium sulfate [J]. Atmospheric Chemistry and Physics, 2015, 15(24):
|
14 |
071-14089.
|
[83] |
Estillore A D, Hettiyadura A P S, Qin Z, et al. Water uptake and hygroscopic growth of organosulfate aerosol [J].
|
|
Environmental Science & Technology, 2016, 50(8): 4259-4268.
|
[84] |
Catling D C, Claire M W, Zahnle K J, et al. Atmospheric origins of perchlorate on Mars and in the Atacama [J]. Journal of
|
|
Geophysical Research: Planets, 2010, 115(E1): E00E11.
|
[85] |
Kounaves S P, Stroble S T, Anderson R M, et al. Discovery of natural perchlorate in the Antarctic Dry Valleys and its global
|
|
implications [J]. Environmental Science & Technology, 2010, 44(7): 2360-2364.
|
[86] |
Gough R V, Chevrier V F, Baustian K J, et al. Laboratory studies of perchlorate phase transitions: Support for metastable
|
|
aqueous perchlorate solutions on Mars [J]. Earth and Planetary Science Letters, 2011, 312(3/4): 371-377.
|
[87] |
Martín-Torres F J, Zorzano M P, Valentín-Serrano P, et al. Transient liquid water and water activity at Gale crater on Mars [J].
|
|
Nature Geoscience, 2015, 8(5): 357-361.
|
[88] |
Nuding D L, Davis R D, Gough R V, et al. The aqueous stability of a Mars salt analog: Instant Mars [J]. Journal of
|
|
Geophysical Research: Planets, 2015, 120(3): 588-598.
|
[89] |
Smith P H, Tamppari L K, Arvidson R E, et al. H2O at the Phoenix landing site [J]. Science, 2009, 325(5936): 58-61.
|
[90] |
Martínez G M, Newman C N, De Vicente-Retortillo A, et al. The modern near-surface Martian climate: A review of in-situ
|
|
meteorological data from Viking to Curiosity [J]. Space Science Reviews, 2017, 212(1): 295-338.
|
[91] |
Jia X H, Gu W J, Li Y J, et al. Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4·H2O: Implications
|
|
for the stability of aqueous water in hyperarid environments on Mars and on Earth [J]. ACS Earth and Space Chemistry, 2018,
|
2( |
2): 159-167.
|
[92] |
Gu W J, Li Y J, Tang M J, et al. Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid
|
|
water in some hyperarid environments [J]. RSC Advances, 2017, 7(74): 46866-46873.
|
[93] |
Davidson N, Tong H J, Kalberer M, et al. Measurement of the Raman spectra and hygroscopicity of four pharmaceutical
|
|
aerosols as they travel from pressurised metered dose inhalers (pMDI) to a model lung [J]. International Journal of
|
|
Pharmaceutics, 2017, 520(1/2): 59-69.
|
[94] |
Kleinstreuer; C, Zhang; Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways [J]. Respiratory
|
|
Physiology & Neurobiology, 2008, 163(1-3): 128-138.
|
[95] |
Malvè M, Sánchez-Matás C, López-Villalobos J L. Modelling particle transport and deposition in the human healthy and
|
|
stented tracheobronchial airways [J]. Annals of Biomedical Engineering, 2020, 48(6): 1805-1820.
|
[96] |
Tong H J, Fitzgerald C, Gallimore P J, et al. Rapid interrogation of the physical and chemical characteristics of salbutamol
|
|
sulphate aerosol from a pressurised metered-dose inhaler (pMDI) [J]. Chemical Communications, 2014, 50(98): 15499-15502.
|
[97] |
Broday D M, Georgopoulos P G. Growth and deposition of hygroscopic particulate matter in the human lungs [J]. Aerosol
|
|
Science and Technology, 2001, 34(1): 144-159.
|
[98] |
Hiller F C, Mazumder M K, Wilson J D, et al. Aerodynamic size distribution, hygroscopicity and deposition estimation of
|
|
beclomethasone dipropionate aerosol [J]. Journal of Pharmacy and Pharmacology, 2011, 32(1): 605-609.
|
[99] |
Umetsu D T, McIntire J J, Akbari O, et al. Asthma: An epidemic of dysregulated immunity [J]. Nature Immunology, 2002, 3
|
(8) |
: 715-720.
|
[100] |
Dickstein B. Enzyme lysis of asthmatic sputum. A review and progress report [J]. Annals of Allergy, 1959, 17: 784-801.
|
[101] |
Simon S W, Harmon G A. Comparison of various expectorant drugs employing a new method for determining sputum
|
|
viscosity [J]. Journal of Allergy, 1961, 32(6): 493-500.
|
[102] |
Labiris N R, Dolovich M B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of
|
|
aerosolized medications [J]. British Journal of Clinical Pharmacology, 2003, 56(6): 588-599.
|
[103] |
Shubin H, Sherson J S, Weissman D. Trypsin therapy in pulmonary diseases, 1955-1960 [J]. Diseases of the Chest, 1961, 40
|
(2) |
: 148-153.
|
[104] |
Mather G K, Terblanche D E, Steffens F E, et al. Results of the South African cloud-seeding experiments using hygroscopic
|
|
flares [J]. Journal of Applied Meteorology, 1997, 36(11): 1433-1447.
|
[105] |
Silverman B A. A critical assessment of hygroscopic seeding of convective clouds for rainfall enhancement [J]. Bulletin of the
|
|
American Meteorological Society, 2003, 84(9): 1219-1230.
|
[106] |
An H, Chen Y, Wang Y, et al. High-performance solar-driven water harvesting from air with a cheap and scalable hygroscopic
|
|
salt modified metal-organic framework [J]. Chemical Engineering Journal, 2023, 461: 141955.
|
[107] |
Lu K J, Liu C J, Liu J, et al. Hierarchical natural pollen cell-derived composite sorbents for efficient atmospheric water
|
|
harvesting [J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33032-33040.
|
[108] |
Nandakumar D K, Zhang Y X, Ravi S K, et al. Solar energy triggered clean water harvesting from humid air existing above
|
|
sea surface enabled by a hydrogel with ultrahigh hygroscopicity [J]. Advanced Materials, 2019, 31(10): e1806730.
|
[109] |
Talukdar P, Olutmayin S O, Osanyintola A F, et al. An experimental data set for benchmarking 1-D, transient heat and
|
|
moisture transfer models of hygroscopic building materials. Part I: Experimental facility and material property data [J].
|
|
International Journal of Heat and Mass Transfer, 2007, 50(23, 24): 4527-4539.
|
[110] |
Gómez-Arriaran I, Sellens-Fernández I, Odriozola-Maritorena M, et al. A PC-tool to calculate the moisture buffer value [J].
|
|
Energy Procedia, 2017, 133: 68-75.
|
[111] |
Sagar V R, Kumar P S. Recent advances in drying and dehydration of fruits and vegetables: A review [J]. Journal of Food
|
|
Science and Technology, 2010, 47(1): 15-26.
|
[112] |
Wu J X, Zhang L, Fan K. Recent advances in ultrasound-coupled drying for improving the quality of fruits and vegetables: A
|
|
review [J]. International Journal of Food Science & Technology, 2022, 57(9): 5722-5731.
|
[113] |
Chen S G, Zhang S B, Galluzzi M, et al. Insight into multifunctional polyester fabrics finished by one-step eco-friendly
|
|
strategy [J]. Chemical Engineering Journal, 2019, 358: 634-642.
|
[114] |
Wang Y F, Xia G, Yu H, et al. Mussel-inspired design of a self-adhesive agent for durable moisture management and bacterial
|
|
inhibition on PET fabric [J]. Advanced Materials, 2021, 33(35): e2100140.
|
[115] |
Sun J X, Liu L, Xu L, et al. Key role of nitrate in phase transitions of urban particles: Implications of important reactive
|
|
surfaces for secondary aerosol formation [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 1234-1243.
|